Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x+3)(y+2) = 1
=> (x+3) \(\in\)Ư(1) = \(\left\{-1;1\right\}\)
Do (x+3)(y+2) là số dương
=> (x+3) và (y+2) cùng dấu
\(\Rightarrow\hept{\begin{cases}x+3=1\\y+2=1\end{cases}}\)hay \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}}\)
TH1:
\(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Vậy ............
b, (2x - 5)(y-6) = 17
=> \(\left(2x-5\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
2x - 5 | -17 | -1 | 1 | 17 |
x | -6 | 2 | 3 | 11 |
y - 6 | -1 | -17 | 17 | 1 |
y | 5 | -11 | 23 | 7 |
Vậy \(\left(x,y\right)\in\left\{\left(-6,5\right);\left(2,-11\right);\left(3,23\right);\left(11,7\right)\right\}\)
c, Tương tự câu b
bài 1:
a) ta có: 3x + 5 = (3(x+1)+2)\(⋮\)(x+1)
vì (3(x+1)\(⋮\)(x+1) nên 2 \(⋮\)(x+1) => (x+1) \(\in\)Ư(2) => (x+1) \(\in\)\(\xi\)-2;-1;1;2 \(\xi\)=> x \(\in\)\(\xi\)-3; -2; 0; 1 \(\xi\)
vậy, x= -3; -2; 0; 1
Bài 3.
a, \(\left(-12+x\right)\left(x-9\right)< 0\)
TH1:\(\left\{{}\begin{matrix}-12+x>0\\x-9< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>12\\x< 9\end{matrix}\right.\)(vô lý)
TH2:\(\left\{{}\begin{matrix}-12+x< 0\\x-9>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 12\\x>9\end{matrix}\right.\)\(\Rightarrow9< x< 12\)
Vậy \(9< x< 12\) thì thỏa mãn đề
b, \(\left(11-x^2\right)\left(45-x^2\right)>0\)
TH1:\(\left\{{}\begin{matrix}11-x^2>0\\45-x^2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^2< 11\\x^2< 45\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< \sqrt{11}\\x< \sqrt{45}\end{matrix}\right.\) \(\Rightarrow x< \sqrt{11}\)
TH2:\(\left\{{}\begin{matrix}11-x^2< 0\\45-x^2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^2>11\\x^2>45\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>\sqrt{11}\\x>\sqrt{45}\end{matrix}\right.\) \(\Rightarrow x>\sqrt{45}\)
Vậy \(x< \sqrt{11}\) hoặc \(x>\sqrt{45}\)
Bài 5,
a/ \(\left(2x+2\right)\left(2y-1\right)=23\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2\inƯ\left(23\right)\\2y-1\inƯ\left(23\right)\end{matrix}\right.\)
Ta có bảng:
2x+2 | -23 | -1 | 1 | 23 |
2y-1 | -1 | -23 | 23 | 1 |
x | \(\dfrac{-25}{2}\)(loại) | \(\dfrac{-3}{2}\)(loại) | \(\dfrac{-1}{2}\)(loại) | \(\dfrac{21}{2}\) (loại) |
y | 0 | -11 | 12 | 1 |
Vậy k có cặp (x;y) nào tm yêu cầu của đề bài
b,c tương tự
Bài 1: \(3\left(x-2\right)-2\left(x+1\right)=3\)
\(\Leftrightarrow3x-6-2x-2=3\)
\(\Leftrightarrow x=11\)
Vậy x = 11
Bài 2: x + 11 chia hết cho x-2
<=> (x-2)+13 chia hết cho x-2
<=> 13 chia hết cho x-2
<=> x-2 thuộc Ư(13) = {-1;1;13;-13}
Ta lập bảng:
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
Vậy x = {-11;1;3;15}
b) 2x+11 chia hết cho x-1
<=> 2(x-1)+9 chia hết cho x-1
Vì 2(x-1) đã chia hết cho x-1
=> 9 phải chia hết cho x-1
<=> x-1 thuộc Ư(9)={1;-1;3;-3;9;-9}
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
Vậy x = {-8;-2;0;2;4;10}
Bài 3:
a) a.(b-2)=5=1.5=5.1=(-5).(-1)=(-1).(-5)
a | 1 | 5 | -1 | -5 |
b-2 | 5 | 1 | -5 | -1 |
b | 7 | 3 | -3 | 1 |
Vậy (a;b) = (1;7) ; (5;3) ; (-1;-3) ; (-5;1)
b) Tương tự
bài 1 : \(3.\left(x-2\right)-2.\left(x+1\right)=3\)
\(=>3x-6-2x-2=3\)
\(=>x=3+6+2=11\)
bài 2 :
a,\(x+11⋮x-2\)
\(=>x-2+13⋮x-2\)
\(Do:x-2⋮x-2\)
\(=>13⋮x-2\)
\(=>x-2\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-11;1;3;15\right\}\)
b,\(2x+11⋮x-1\)
\(=>x.\left(x-1\right)+13⋮x-1\)
\(Do:x.\left(x-1\right)⋮x-1\)
\(=>13⋮x-1\)
\(=>x-1\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-12;0;2;14\right\}\)
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1