Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Bài 3:
ta có: 5 lần góc B bù với góc A
=> 5. góc B + góc A = 180 độ
=> góc A = 180 độ - 5. góc B
ta có: 2 lần góc B phụ với góc A
=> 2. góc B + góc A = 90 độ
thay số: 2.góc B + ( 180 độ - 5.góc B) = 90 độ
2.góc B + 180 độ - 5. góc B = 90 độ
=> (-3).góc B = 90 độ - 180 độ
(-3).góc B = -90 độ
góc B = (-90 độ) : (-3)
=> góc B = 30 độ
mà góc A = 180 độ - 5.góc B
thay số: góc A = 180 độ - 5 . 30 độ
góc A =180 độ - 150 độ
góc A = 30 độ
=> góc A = góc B ( = 30 độ)
Bài 1:
ta có: \(3^{4n}+2017=\left(3^4\right)^n+2017=81^n+2017\)
mà 81^n có chữ số tận cùng là 1
2017 có chữ số tận cùng là 7
=> 81^n + 2017 có chữ số tận cùng là: 1+7 = 8
Bài 2:
ta có: \(M=9^{2n+1}+1\)
\(M=9^{2n}.9+1\)
\(M=81^n.9+1\)
mà 81^n có chữ số tận cùng là 1=> 81^n.9 có chữ số tận cùng là 9
=> 81^n.9 +1 có chữ số tận cùng là 0
=> 81^n.9+1 chia hết cho 10
\(\Rightarrow9^{2n+1}+1⋮10\left(đpcm\right)\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Câu 1:
a) Gọi biểu thức đó là A
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vài công thức ta có ;
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) Gọi biểu thức đó là S
\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)
\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)
Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã
Câu 2 :
a) \(\frac{5}{n+1}\)
Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5
n+1=1 => n = 0
n + 1 =5 => n = 4
n+1=-1 => n =-2
n+1 = -5 => n = -6
b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)
Để biểu thức là số nguyên thì n + 1 là ước của 7
n + 1 = 1 => n= 0
n+1=7=> n =6
n + 1 = -7 => n =-8
n+1=-1 => n= -2
c) \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)
Để biểu thức là số nguyên thì n+1 là ước của 6
n+1 = | 1 | -1 | 6 | -6 |
n = | 0 | -2 | 5 | -7 |
Từ đó KL giá trị n
CÂU 3 :
b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)
x+2= | 1 | -1 | 2 | -2 |
x = | -1 | -3 | 0 | -4 |
Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!
Ai thấy đúng thì ủng hộ nha !!!
câu 1 :
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)
Vì phép nhân có thể rút gọn
Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)
Câu 2 :
a) Ta có : \(\frac{5}{n+1}\)
Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }
Với n + 1 = -1 => n = -1 - 1 = - 2 ( TM )
Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )
Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )
Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )
Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1
Còn câu b nữa tương tự nha
" TM là thỏa mản "
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*
Bài 1:
Tổng các số nguyên x thỏa mãn bài toán là:
-99+(-98)+(-97)+(-96)+...+95+96
= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0
= -99+(-98)+(-97)+0+0+...+0
= -294
Bài 4:
n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
=> n thuộc {2;0;4;-2;6;-4;16;-14}
Mà n thuộc N
Do đó: n thuộc {2;0;4;6;16}
Vậy...
Bài 5:
5+n chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Vậy...
Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96
Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96
= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)
= -294
Vậy...
Bài 5
Ta có (5+n)=(n+1)+4
Vì (n+1)\(⋮\)(n+1)
Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}
Ta có bảng sau
n+1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
Vậy...
1.
a) ( x + 1 )2 _ 1 = 15
( x + 1 )2 = 15+1
( x + 1 )2 = 16
x + 1 = 4 hoặc x + 1 = -4
x = 4 - 1 hoặc x = -4 + 1
x = 3 hoặc x = -3
b) (x - 2017)x + 2017 = ( x - 2017 )x + 2011
x + 2017 = x + 2011
x = x + 2011 - 2017
x = x + 6
Không có x thỏa mãn