Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}.\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)
= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)
= 1/2 . ( 1- 1/2015)
= 1007/2015
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
2*(1/1*3+1/3*5+.......+1/99*100)
=2*(2/1*3+2/3*5+.....+2/99*100)*1/2
=1/3-1/5+1/5-1/7+....+1/99-1/100
=1/3-1/100
=100/300-3/300
=97/300
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\)
2A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{7.9}\)
2A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\)
2A = \(1-\frac{1}{9}=\frac{8}{9}\)
A = \(\frac{8}{9}:2=\frac{4}{9}\)
Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\)
2B = \(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{8.10}\)
2B = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
2B = \(\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
B = \(\frac{2}{5}:2=\frac{1}{5}\)
Thay A và B vào S ta được:
\(S=\frac{4}{9}+\frac{1}{5}=\frac{29}{45}\)
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{7.9}+\frac{1}{8.10}\)
\(\Rightarrow S=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{1}{2}\left(\frac{8}{9}+\frac{2}{5}\right)\)
\(S=\frac{1}{2}.\frac{58}{45}\)
\(S=\frac{29}{45}\)
\(S=\frac{1}{1.2}+\frac{1}{3.4}+.........+\frac{1}{199.200}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2017.2019}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2017.2019+1}{2017.2019}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{2018^2}{2017.2019}\)
\(=\frac{2}{1}.\frac{2018}{2019}=\frac{4036}{2019}\)
cách bạn Chi hay nè