Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...
1/ \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow9x^2-6x-35=0\)
\(\Leftrightarrow\left(2x-1\right)^2-36=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+6\right)=0\)
2/ \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+5\right)=0\)
3/ \(25x^2-\left(4x-3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(9x-3\right)=0\)
1) ( 9x2 - 25 ) - ( 6x - 10 ) = 0
\(\Leftrightarrow\) [ ( 3x)2 - 52 ] - 2.( 3x + 5 ) = 0
\(\Leftrightarrow\)( 3x - 5 ).( 3x + 5 ) - 2.( 3x - 5 ) = 0
\(\Leftrightarrow\) ( 3x + 5 ).( 3x + 5 - 2 ) = 0
\(\Leftrightarrow\)( 3x + 5 ).( 3x + 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+5=0\\3x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-5\\3x=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-5}{3}\\x=-1\end{cases}}\)
Vậy x = \(\frac{-5}{3}\) , x = -1
2) ( 3x + 5 )2 - 4x2 = 0
\(\Leftrightarrow\) ( 3x + 5 - 2x ).( 3x + 5 + 2x ) = 0
\(\Leftrightarrow\)( x + 5 ).( 5x + 5 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+5=0\\5x+5=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-5\\x=-1\end{cases}}\)
Vậy x = -5 , x = -1
3) 25x2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\)( 5x )2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\) ( 5x - 4x + 3 ).(5x + 4x - 3 ) = 0
\(\Leftrightarrow\)( x + 3 ).( 9x - 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\9x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\9x=3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
Vậy x = 3 , x = \(\frac{1}{3}\)
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
1, a^2 - 4b^2
= a^2 - (2b)^2
=(a-2b)(a+2b)
2, 1/4 a^2 - b^2
=(1/2a)^2 -b^2
=(1/2a-b)(1/2a+b)
3, (a-2b)^2 - (3a+b)^2
= (a-2b-3a-b)(a-2b+3a+b)
= (-2a-3b)(4a-b)
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)