K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

A B C D M N

7 tháng 11 2021

a, Xét tứ giác ANDM có: góc NAM=90º(gt)

                                        góc AND=90º(DN vuông góc AC)

                                        góc DMA=90º(DM vuông góc AB)

=> Tứ giác ANDM là hcn

30 tháng 12 2019

A B C D M E K

a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)

\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )

b ) Ta có : ME là đường trung bình của tam giác ABC 

\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)

\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

ADME : hình chữ nhật 

\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)

c ) Dễ thấy AC là đường trung trực của MK

\(\Rightarrow AM=AK\)và \(CM=CK\)

Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )

\(\Rightarrow AM=AK=CM=CK\)

\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )

d ) Ta có : \(ME=\frac{1}{2}AB\)

\(\Rightarrow AB=2ME=MK\)

Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)

\(\Leftrightarrow AC=AB\) ( vì AB = MK )

\(\Leftrightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

15 tháng 10 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

=>OBAC là tứ giác nội tiếp

b: Xét (O) có

DB,DM là tiếp tuyến

=>DB=DM và OD là phân giác của \(\widehat{BOM}\left(1\right)\)

Xét (O) có

EM,EC là tiếp tuyến

=>EM=EC và OE là phân giác của \(\widehat{MOC}\left(2\right)\)

\(C_{ADE}=AD+DE+AE\)

\(=AB-BD+DM+ME+AC-CE\)

\(=AB+AC=2AB\)

c: \(\widehat{DOE}=\widehat{DOM}+\widehat{EOM}\)

\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{COM}\right)=\dfrac{1}{2}\cdot\widehat{BOC}\)

15 tháng 10 2023

Nhưng ko có hình à

 

 

 

24 tháng 6 2017

a) tứ giác ABOC là hình vuông

vì BAC = 90 (giả thiết)

ABO = 90 (AB là tiếp tuyến)

ACO = 90 (AC là tiếp tuyến)

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau