K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2022

Bài 2:

Gọi M là trung điểm của AB,N là trung điểm của CD

vecto GA+vecto GB+vecto GC+vecto GD=vecto 0

=>2 vetco GM+2 vecto GN=vecto 0

=>vecto GM+vecto GN=vecto 0

=>G là trung điểm của MN

NV
29 tháng 10 2020

Câu 1:

\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)

Đáp án D sai

Câu 2:

\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)

Ta có:

\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)

\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

Đáp án A đúng

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)

25 tháng 11 2019

cau nay cx hoi dc

25 tháng 11 2019

ngu the

b: \(\left|\overrightarrow{GB}\right|=GB=GA=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

c: \(\left|\overrightarrow{GA}+\overrightarrow{GB}\right|\)

\(=\sqrt{GA^2+GB^2+2\cdot GA\cdot GB\cdot cos\left(GA,GB\right)}\)

\(=\sqrt{2\cdot\left(\dfrac{a\sqrt{3}}{3}\right)^2+2\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{-1}{2}}\)

\(=\sqrt{2\cdot\dfrac{1}{3}\cdot a^2-\dfrac{a^2}{3}}=\sqrt{\dfrac{a^2}{3}}\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

Với $I$ là trung điểm của $BC$ thì \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

Ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{AI}+\overrightarrow{IC}\)

\(=2\overrightarrow{AI}+(\overrightarrow{IB}+\overrightarrow{IC})\)

\(=2\overrightarrow{AI}\)

\(\Rightarrow \overrightarrow{AI}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\) (đpcm)

b) Gọi giao điểm của $AG$ với $BC$ là $T$

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{AG}+\overrightarrow{GC}\)

\(=2\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{AG}+\overrightarrow{GI}+\overrightarrow{IB}+\overrightarrow{GI}+\overrightarrow{IC}\)

\(=2\overrightarrow{AG}+2\overrightarrow{GI}\)

Theo tính chất đường trung tuyến thì \(\overrightarrow{AG}=2\overrightarrow{GI}\) nên:

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AG}+\overrightarrow{AG}=3\overrightarrow{AG}\)

\(\Rightarrow \overrightarrow{AG}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

31 tháng 7 2019

a/ tự vẽ: M,A,B thẳng hàng, MA=2MB=> B là TĐ MA

N,A,C thẳng hàng, NA= 2CN/3

b/ tính cái j theo vecto AC và AB z?

c/ G là cái j

VT lại đề bài cái coi :))