K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

21 tháng 1 2020

A N M B C I E

Ta có \(\Delta ABC\)cân tại A

=> AB = AC 

và \(\widehat{ABC}=\widehat{ACB}\)

Lại có \(\hept{\begin{cases}\widehat{ABM}=\widehat{MBC}\\\widehat{ACN}=\widehat{BCN}\end{cases}}\left(gt\right)\)

=> \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{BCN}\)

=> \(\widehat{ABM}=\widehat{ACN}\)

+) Xét \(\Delta AMC\)và \(\Delta ANB\)

 \(\widehat{A}\) : chung

AC= AB (cmt)

\(\widehat{ABM}=\widehat{ACN}\)  (cmt)

=> \(\Delta AMC\)=  \(\Delta ANB\)  (g-c-g)

=> AM= AN  ( 2 canh tương ứng)

=> \(\Delta AMN\) cân tại A

21 tháng 1 2020

b, Theo câu a, ta có :

\(\widehat{ANM}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)  

Lại có \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ANM}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

=> MN // BC

Xin lỗi nhé mình chưa nghĩ ra câu c

12 tháng 3 2022

undefined

câu a)

12 tháng 3 2022

undefined

câu b)

A B C M N E I

a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)

\(\Rightarrow\) \(AB=AC\)  hay \(\frac{1}{2}AB=\frac{1}{2}AC\)  và   \(BM\)\(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)

\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)

Xét \(\Delta AMN\)\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)

b)Có 

  • \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
  • \(N\)là trung điểm của \(AB\)(....)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//BC\left(dpcm\right)\)

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
16 tháng 3 2017

kết quả là 54 cm

16 tháng 3 2017

54 đó chắc 100% luôn

17 tháng 4 2016

a)

ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC

xét tam giác ABM và tam giác ACN có:

AB=AC

AM=AN(cmt)

A(chung)

suy ra tam giác ABM=ACN(c.g.c)

suy ra BM=CN

b)

ta có: I là trọng tâm cua tam giác ABC 

ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I

c)

xét tam giác AIB và tam giác AIC có:

AB=AC

AI(chung)

IB=IC

suy ra tam giác AIB=AIC(c.c.c)

suy ra BAI=CAI

suy ra AI là phân giác của góc A

17 tháng 4 2016

A B C I N M