Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
Ta có Góc xAy Với gócABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai dường thẳng songsong ta đc:
ABy=40độ
2/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN
k giùm nha! ^-^
Gọi tia đói của Ax là Ax'
a)
Ta có
\(\widehat{xBz}=\widehat{xAy}=50^0\) ( Hai góc đồng vj ; Bz // Ay )
b)
\(\widehat{BAy}=\widehat{x'Bz}\)( đồng vị )
Mặt khác
\(\widehat{A1}=\frac{1}{2}.\widehat{BAy}\)
\(\widehat{B1}=\frac{1}{2}.\widehat{x'Bz}\)
\(\Rightarrow\widehat{A1}=\widehat{B1}\)
MÀ \(\widehat{A1};\widehat{B1}\) đồng vị
=> Am//Bn
a) vì Bz//Ay → góc xBz = góc xAy ( hai góc đồng vị)
Mà góc xAy = 50 ( gt) → xBz = 50
b) Vì AM là tia phân giác của góc xAy → xAM = 1/2 xAy →xAM = 25 (1)
Vì BN là tia pg của góc xBz → góc xBN = 1/2 xBz → xBN = 25 (2)
Từ (1) và (2) suy ra xAM = xBN =25
Mà chúng ở vị trí đồng vị → AM // BN ( dấu hiệu nhận biết hai đg thẳng song song)
Bài làm :
Ta có hình vẽ :
a)Ta có :
\(\widehat{xAy}=\widehat{xBz}=40^o\left(\text{2 góc đồng vị}\right)\)
\(\Rightarrow Bz\text{//}Ay\)
=> Điều phải chứng minh
b)Ta có :
\(\widehat{xAm}=\widehat{xBn}=\frac{40}{2}=20^o\)
Mà 2 góc này ở vị trí đồng vị
=> Am//Bn
=> Điều phải chứng minh
a,Ta có : góc xAy = góc xBz = 40độ
mà chúng ở vị trí đồng vị nên
Bz // Ay
b,Vì Am , Bn lần lượt là tia phân giác góc xAy và góc xOz nên :
góc A1 = \(\frac{\widehat{xAy}}{2}=\frac{40^0}{2}\)= 20độ
góc B1 = \(\frac{\widehat{xBz}}{2}=\frac{40^0}{2}\) = 20độ
mà góc xAy = góc xBz
Suy ra : góc A1 = góc B1
Ta lại có : góc A1 và góc B1 ở vị trí đồng vị
Vậy Am // Bn .
Học tốt