K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2020

Bài 2 hình như sai đề thì phải

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

NV
6 tháng 7 2020

1.

\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)

\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)

\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)

\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)

2.

Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A

\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)

b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua

\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)

\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

Vậy d luôn đi qua \(B\left(-1;5\right)\)

1: Phương trình hoành độ giao điểm là:

\(x^2-kx+k-2=0\)

\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)

\(=k^2-4k+8=\left(k-2\right)^2+4>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow k^2-2\left(k-2\right)=7\)

\(\Leftrightarrow k^2-2k-3=0\)

=>(k-3)(k+1)=0

=>k=3 hoặc k=-1

6 tháng 7 2020

a) Giải phương trình hoành độ giao điểm với a=2 ta đc

\(x^2-2x-2=0\)

\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)

với x=...

28 tháng 6 2020

Xét Parabol \(\left(P\right):y=x^2\)

và đường thẳng \(\left(d\right):y=\left(2m-1\right)x-m+2\)

Phương trình hoành độ giao điểm của \(\left(P\right)\)\(\left(d\right)\) ta có :

\(x^2=\left(2m-1\right)x-m+2\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)

\(\left(a=1;b=-\left(2m-1\right);c=m-2\right)\)

Ta có :

\(\Delta=b^2-4ac\)

\(=\left(-\left(2m-1\right)\right)^2-4.1.\left(m-2\right)\)

\(=4m^2-4m+1-4m+8\)

\(=4m^2-8m+9\)

\(=4\left(m^2-2m+1\right)+5\)

\(=4\left(m-1\right)^2+5>0\forall m\)

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow\) \(\left(P\right)\)\(\left(d\right)\) luôn cắt nhau tại 2 điểm phân biệt \(\left(đpcm\right)\)