Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)
\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)
\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)
\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)
2.
Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A
\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)
b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua
\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)
\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
Vậy d luôn đi qua \(B\left(-1;5\right)\)
1: Phương trình hoành độ giao điểm là:
\(x^2-kx+k-2=0\)
\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)
\(=k^2-4k+8=\left(k-2\right)^2+4>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\)
\(\Leftrightarrow k^2-2k-3=0\)
=>(k-3)(k+1)=0
=>k=3 hoặc k=-1
a) Giải phương trình hoành độ giao điểm với a=2 ta đc
\(x^2-2x-2=0\)
\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)
với x=...
Xét Parabol \(\left(P\right):y=x^2\)
và đường thẳng \(\left(d\right):y=\left(2m-1\right)x-m+2\)
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) ta có :
\(x^2=\left(2m-1\right)x-m+2\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)
\(\left(a=1;b=-\left(2m-1\right);c=m-2\right)\)
Ta có :
\(\Delta=b^2-4ac\)
\(=\left(-\left(2m-1\right)\right)^2-4.1.\left(m-2\right)\)
\(=4m^2-4m+1-4m+8\)
\(=4m^2-8m+9\)
\(=4\left(m^2-2m+1\right)+5\)
\(=4\left(m-1\right)^2+5>0\forall m\)
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\) \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm phân biệt \(\left(đpcm\right)\)
Bài 2 hình như sai đề thì phải