Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a, Gọi hai số tự nhiên cần tìm là : a và b
Ta có : a . b = 42
=> a và b \(\in\){ 42 }
Ư(42) = { 1;2;3;6;7;14;21;42 }
Ta có bảng sau :
a | 1 | 2 | 3 | 6 | 7 | 14 | 21 | 42 |
b | 42 | 21 | 14 | 7 | 6 | 3 | 2 | 1 |
Vậy các cặp số cần tìm (a;b) là : (1;42) ; (2;21) ; ( 3;14) ; (6;7) ; (7;6) ; (14;3) ; ( 21;2) ; ( 42;1)
b,
Ta có : a . b = 30
=> a và b \(\in\){ 30 }
Ư(42) = { 1;2;3;5;6;10;15;30 }
Mà : a < b
Ta có bảng sau :
a | 1 | 2 | 3 | 5 |
b | 30 | 15 | 10 | 6 |
Vậy các cặp số (a;b) là : (1;30) ; (2;15) ; ( 3;10) ; (5;6)
a) 42 = 1 * 42
= 2 * 21
= 3 * 14
= 6 * 7
b) 30= 3 * 10
= 2 *15
= 5 *6
= 1 * 30
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) Vì a < b ; a . b = 30 NÊN TA CÓ :
a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a) 480 chia hết cho a , 600 chia hết cho a và a lớn nhất
=> a = ƯCLN(480, 600)
480 = 25 . 3 . 5
600 = 23 . 3 . 52
ƯCLN(480, 600) = 23 . 3 . 5 = 120
=> a = 120
b) 126 chia hết cho x , 210 chia hết cho x và 15 < x < 30
=> x thuộc ƯC(126, 210) và 15 < x < 30
126 = 2 . 32 . 7
210 = 2 . 3 . 5 . 7
ƯCLN(126, 210) = 2 . 3 . 7 = 42
ƯC(126,210) = Ư(42) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
Vì 15 < x < 30 => x = 21
c) 35 chia hết cho y , 105 chia hết cho y và y > 5
=> y thuộc ƯC(35, 105)
35 = 5 . 7
105 = 3 . 5 . 7
ƯCLN(35, 105) = 5 . 7 = 35
ƯC(35. 105) = Ư(35) = { 1 ; 5 ; 7 ; 35 ]
Vì y > 5 => y = 7 , y = 35
Y= 7
Y=35