Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90
Bài 1:
Xét tam giác ABD ta có:
\(AD< AB+DB\)(áp dụng bất đẳng thức tam giác)(1)
Xét tam giác BCD ta có:
\(DB< BC+DC\)(áp dụng bất đẳng thức tam giác)(2)
Từ (1) và (2) suy ra:
\(AD< AB+BC+DC\)
Vậy độ dài của bất kì cạnh nào cũng bé hơn tổng độ dài 3 cạnh còn lại(đpcm)
Chúc bạn học tốt!!!
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Gọi tứ giác là ABCD,O là giao điểm của 2 đường chéo
Xét t/g AOB có: OA+OB>AB
Xét t/g BOC có: OB+OC>BC
Xét t/g COD có: OC+OD>CD
Xét t/g AOD có: OA+OD>DA
Do đó: OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA
=>2(OA+OB+OC+OD)>AB+BC+CD+DA
=>AC+BD > \(\frac{AB+BC+CD+DA}{2}\) (1)
Xét t/g ABC có: AB+BC > AC
Xét t/g BDC có: BC+DC > BD
Xét t/g CDA có: CD+AD > AC
Xét t/g DAB có: DA+AB > BD
Do đó AB+BC+BC+CD+CD+AD+DA+AB > AC+BD+AC+BD
=>2(AB+BC+CD+DA) > 2(AC+BD)
=>AB+BC+CD+DA > AC+BD (2)
Từ (1) và (2) => đpcm
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC+BD=AO+OB+OC+OD>AB+CD=a+c
Tương tự: AC+BD>b+d.
Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.
Theo bất đẳng thức tam giác ta có:
AC<a+b;AC<c+d
BD<b+c;BD<a+d
⇒2(AC+BD)<2(a+b+c+d).
⇒AC+BD<a+b+c+d.
Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.
gọi độ dài cạnh góc vuông thứ hai là x (m) ( x>0 )
độ dài cạnh huyền lớn hơn độ dài cạnh góc vuông thứ hai là 2 m
=> độ dài cạnh huyền : x+2 (m)
theo định lý Py-ta-go ta có phương trình:
62 +x2= ( x+2)2
<=> 36 + x2= x2+4x+4
<=> 36+x2- x2-4x -4=0
<=> 32-4x=0
<=> 4x=32
<=> x=8 (TM)
vậy độ dài cạnh góc vuông thứ hai của tam giác đó là 8m