K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Giả sử bác Việt chèo thuyền cập bến ở vị trí M và ta đặt BM=x (km) (x>0)

Ta có: MC=BC-BM=9,25-x (km)

Thời gian di chuyển của anh Nam đến điểm hẹn gặp nhau là \(\frac{{9,25 - x}}{5}\)\(\)(giờ)

Tam giác ABM vuông tại B, nên ta có:

\(\)\(A{M^2} = A{B^2} + B{M^2} = {x^2} + 16\)

=> \(AM = \sqrt {{x^2} + 16} \) (km)

Thời gian di chuyển của bác Việt đến điểm hẹn găp nhau là: \(\frac{{\sqrt {{x^2} + 16} }}{4}\) (giờ)

Để hai người không phải chờ nhau thì ta có phương trình:

\(\frac{{\sqrt {{x^2} + 16} }}{4} = \frac{{9,25 - x}}{5}\)\( \Leftrightarrow 5\sqrt {{x^2} + 16}  = 37 - 4x\)

Bình phương hai vế của phương trình trên ta được:

\(25({x^2} + 16) = 16{x^2} - 296x + 1369\)

\( \Leftrightarrow 9{x^2} + 296x - 969 = 0\)

\( \Leftrightarrow x = 3\) hoặc \(x =  - \frac{{323}}{9}\)

Thử lại ta thấy cả hai giá trị của x đều thỏa mãn

Mà x>0 nên ta chọn x=3

Vậy vị trí hai người gặp nhau cách bến Bính 3km và cách thôn Hoành 6,25 km.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Gọi BM=x km (0<x<7)

=> MC=7-x (km)

Ta có: \(AM = \sqrt {A{B^2} + B{M^2}} \)\( = \sqrt {16 + {x^2}} \left( {km} \right)\)

Thời gian từ A đến M là: \(\frac{{\sqrt {16 + {x^2}} }}{3}\left( h \right)\)

Thời gian từ M đến C là: \(\frac{{7 - x}}{5}\left( h \right)\)

Tổng thời gian từ A đến C là 148 phút nên ta có:

\(\begin{array}{l}\frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{148}}{{60}}\\ \Leftrightarrow \frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{37}}{{15}}\\ \Leftrightarrow \frac{{5\sqrt {16 + {x^2}} }}{{15}} + \frac{{3.\left( {7 - x} \right)}}{{15}} = \frac{{37}}{{15}}\\ \Leftrightarrow 5\sqrt {16 + {x^2}}  + 3.\left( {7 - x} \right) = 37\\ \Leftrightarrow 5\sqrt {16 + {x^2}}  = 16 + 3x\\ \Leftrightarrow 25.\left( {16 + {x^2}} \right) = 9{x^2} + 96x + 256\\ \Leftrightarrow 16{x^2} - 96x + 144 = 0\\ \Leftrightarrow x = 3\left( {tm} \right)\end{array}\)

Vậy khoảng cách từ vị trí B đến M là 3 km.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Đổi 300 m =0,3 km, 800 m = 0,8 km

7,2 phút =0,12(h)

Gọi khoảng cách từ C đến D là x (km) (0,8>x>0)

Khi đó, DB=0,8-x (km)

Theo định lý Py-ta-go ta có: \(AD = \sqrt {A{C^2} + C{D^2}} \)\( = \sqrt {0,{3^2} + x^2} \) (km)

Thời gian đi từ A đến D là: \(\frac{{\sqrt {0,{3^2} + x^2} }}{6}\left( h \right)\)

Thời gian đi từ D đến B là: \(\frac{{0,8 - x}}{{10}}\left( h \right)\)

Tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút nên ta có phương trình:

\(\begin{array}{*{20}{l}}
{\frac{{\sqrt {0,{3^2} + {x^2}} }}{6} + \frac{{0,8 - x}}{{10}} = 0,12}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} + 3.\left( {0,8 - x} \right) = 0,12.30}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} - 3x - 1,2 = 0}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} = 3x + 1,2}\\
{ \Rightarrow 25.\left( {0,{3^2} + {x^2}} \right) = {{\left( {3x + 1,2} \right)}^2}}\\
{ \Leftrightarrow 25.\left( {{x^2} + 0,09} \right) = 9{x^2} + 7,2x + 1,44}\\
{ \Leftrightarrow 16{x^2} - 7,2x + 0,81 = 0}\\
{ \Leftrightarrow x = 0,225 \, \, \, (TM)}
\end{array}\)

Vậy khoảng cách từ vị trí C đến D là 225m.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Bình phương hai vế ta được:

\(\begin{array}{l}{(8 - 40x)^2} + {(7 - 40x)^2} = 25\\ \Leftrightarrow 64 - 640x + 1600{x^2} + 49 - 560x + 1600{x^2} = 25\\ \Leftrightarrow 3200{x^2} - 1200x + 88 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11}}{{40}}\\x = \frac{1}{{10}}\end{array} \right.\end{array}\)

Vậy phương trình có hai nghiệm là \(x = \frac{{11}}{{40}}\)  và \(x = \frac{1}{{10}}\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi C là vị trí ngọn hải đăng và H là hình chiếu của C trên AB.

Khi đó CH là khoảng cách từ ngọn hải đăng tới bờ biển.

Ta có: \( \widehat {ACB} = \widehat {HBC} - \widehat {BAC} = {75^o} - {45^o} = {30^o}; \,  \widehat {ABC} = {180^o} - {75^o} = {105^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)

\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {105^o}.\frac{{30}}{{\sin {{30}^o}}} \approx 58\)

Tam giác ACH vuông tại H nên ta có:

\(CH = \sin A.AC = \sin {45^o}.58 \approx 41\)

Vậy ngọn hải đăng cách bờ biển 41 m.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Giải tam giác là việc đi tìm một số yếu tố của tam giác khi đã biết các yếu tố khác của tam giác đó.

Trong trường hợp này, giải tam giác ABC được hiểu là tìm cạnh AC khi biết cạnh AB, góc A và góc B.

Áp dụng định lí sin ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

Mà \(AB=d, \hat {B} =\beta; \hat {C} =180^o-\alpha -\beta \)

\(\Rightarrow AC = \sin \beta \frac{d}{{\sin \left( {{{180}^o} - \alpha  - \beta } \right)}}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Gọi t (đơn vị: giờ) là thời gian đi cho đến khi hai tàu gặp nhau tại C.

Tàu B đi với vận tốc có độ lớn 30km/h nên quãng đường BC = 30t

Tàu A đi với vận tốc có độ lớn 50km/h nên quãng đường AC = 50t

Theo định lí sin, ta có: \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin B}}\)

Trong đó: \(\left\{ \begin{array}{l}a = BC = 30t\\b = AC = 50t\\\widehat B = {124^o}\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \frac{{30t}}{{\sin \alpha }} = \frac{{50t}}{{\sin {{124}^o}}}\\ \Leftrightarrow \sin \alpha  = \frac{{30t.\sin {{124}^o}}}{{50t}} = \frac{{30.\sin {{124}^o}}}{{50}} \approx 0,4974\end{array}\)

\( \Leftrightarrow \alpha  \approx {30^o}\) hoặc \(\alpha  \approx {150^o}\)(loại)

Vậy tàu A chuyển động theo hướng tạo với vị trí ban đầu của tàu B góc \({30^o}\).

b) Xét tam giác ABC, ta có:

\(\begin{array}{l}\widehat B = {124^o};\widehat A = {30^o}\\ \Rightarrow \widehat C = {180^o} - \left( {\widehat B + \widehat A} \right) = {180^o} - \left( {{{124}^o} + {{30}^o}} \right) = {26^o}\end{array}\)

Theo định lí sin, ta có

\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}} \Rightarrow a = \frac{{c.\sin A}}{{\sin C}}\)

Mà \(\left\{ \begin{array}{l}a = BC = 30t\\c = AB = 53\\\widehat A = {30^o};\widehat C = {26^o}\end{array} \right. \Rightarrow 30t = \frac{{53.\sin {{30}^o}}}{{\sin {{26}^o}}}\)

\(\begin{array}{l} \Leftrightarrow 30t \approx 60,45\\ \Leftrightarrow t \approx 2\;(h)\end{array}\)

Vậy sau khoảng 2 giờ thì tàu A đuổi kịp tàu B.

24 tháng 9 2023

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Tàu A di chuyển theo hướng vecto \(\overrightarrow {{u_1}}  = \left( { - 35;25} \right)\)

Tàu B di chuyển theo hướng vecto \(\overrightarrow {{u_2}}  = \left( { - 30; - 40} \right)\)

Gọi \(\alpha \) là góc giữa hai đường đi của hai tàu, ta có:

\(\cos \alpha  = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {\left( { - 35} \right).\left( { - 30} \right) + 25.\left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 35} \right)}^2} + {{25}^2}} .\sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} = \frac{1}{{5\sqrt {74} }}.\)

b) Sau t giờ, vị trí của tàu A là điểm M có tọa độ là: \(M\left( {3 - 35t; - 4 + 25t} \right)\)

Sau t giờ, vị trí của tàu B là điểm N có tọa độ là: \(N\left( {4 - 30t;3 - 40t} \right)\)

Do đó, \(\overrightarrow {MN}  = \sqrt {{{\left( {1 + 5t} \right)}^2} + {{\left( {7 - 65t} \right)}^2}}  = \sqrt {4250{t^2} - 900t + 50}  = \sqrt {4250{{\left( {t - \frac{9}{{85}}} \right)}^2} + \frac{{40}}{{17}}}  \ge \sqrt {\frac{{40}}{{17}}}  \approx 1,53\left( {km} \right)\)

Suy ra MN nhỏ nhất xấp xỉ 1,53km khi \(t = \frac{9}{{85}}\)

Vậy sau \(\frac{9}{{85}}\) giờ kể từ thời điểm xuất phát thì hai tàu  gần nhau nhất và cách nhau 1,53km

c) Vị trí ban đầu của tàu A tại \({M_o}\) ứng với \(t = 0\) , khi đó \({M_o}\left( {3; - 4} \right)\)

Tàu B di chuyển theo đường thẳng có vecto pháp tuyến \(\overrightarrow n  = \left( {40; - 30} \right)\) và đi qua điểm \(K\left( {4;3} \right)\) Phương trình tổng quát của là: \(40\left( {x - 4} \right) - 30\left( {y - 3} \right) = 0 \Leftrightarrow 4x - 3y - 7 = 0\) \(\Delta \)

Ta có: \(d\left( {{M_o},\Delta } \right) = \frac{{\left| {4.3 - 3.\left( { - 4} \right) - 7} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{17}}{5} = 3,4\left( {km} \right)\)

Vậy nếu tàu A đứng yên ở vị trí ban đầu còn tàu B di chuyển thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4km.