Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay 2016=xy+yz+xz vào các mẫu
dùng Cô-Si đảo vào từng phân số
sẽ dễ dàng chứng minh đc :D
B1:x^2+2016=xy+yz+xz+x^2=...
tuong tu
y^2+2016=... ; z^2+2016=....
B2:bdt am-gm
\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)
\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)
\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)
Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)
Giải
Ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)
Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)
Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)
\(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
Cộng vế với vế ta có:
\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)
\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)
\(VT=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{xy+xz+yz+x^2}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)\(\Rightarrow VT\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Đề bài thiếu điều kiện rồi :")))
thêm điều kiện đi rồi giải cho
Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ
\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)
Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)
Thật vậy,BĐT tương đương với:
\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)
\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)
\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )
=> đpcm
Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B
Ta có:
\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)
=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)
=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
Tương tự
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)
\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)
\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)
\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)
Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z
=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)
=> \(x+y+z\ge3\)với mọi x, y, z dương
Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)
Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)
Đặt: x + y + z = t ( t\(\ge3\))
Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)
Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)
Từ (1); (2)
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)
Dấu "=" xảy ra <=> x= y = z = 1
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
Khi đó BĐT <=>
\(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)
<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)
<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)
<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)
<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)
<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng
Khi đó (1) <=>
\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\)
<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)
Áp dụng buniacopxki cho vế phải ta có
\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)
\(=\sqrt{2\left(x+y+z\right)}\)
=> BĐT được CM
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)