Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$|x|+|2x|=|x|+2|x|=3|x|\geq 0$ do $|x|\geq 0$ với mọi $x\in\mathbb{R}$
Vậy GTNN của biểu thức là $0$. Giá trị này đạt tại $x=0$
\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN
=> 12 - x là số nguyên dương nhỏ nhất
=> 12 - x = 1 => x = 11
Vậy GTLN của hàm số đó là 5 tại x = 11
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN
=> 12 - x là số nguyên âm lớn nhất
=> 12 - x = - 1 => x = 13
Vậy \(y_{min}=-1\Leftrightarrow x=13\)
\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(\ge\left|x-2018\right|+\left|x-2017+2019-x\right|\)
\(\ge\left|x-2018\right|+2\ge2\)
Dấu "=" <=> x = 2018
\(Q=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|\)
\(\ge x-2017+0+2019-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2017\le x\le2019\\x=2018\end{cases}}\Leftrightarrow x=2108\) (thỏa mãn cả hai trường hợp)
Vậy...
P/s: Ở đây mình gộp hai trường hợp \(x-2017\ge0;2019-x\ge0\) thành \(2017\le x\le2019\) cho lẹ nha!
Để A nn thì 2016 - x nn và thuộc N
Suy ra 2016 - x=0
=>x= 2016
Bmin =100
Cmin=90
Dmin =120