Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
1. a) 1012 - 992 = (101 + 99)(101 - 99) = 200 . 2 = 400
b) 98.102 = (100 - 2)(100 + 2) = 1002 - 4 = 10000 - 4 = 9996
c) 772 + 232 + 77.46 = 772 + 232 + 77.23.2 = (23 + 77)2 = 1002 = 10000
d) M = x3 + 9x2 + 27x + 27 = (x + 3)3 = (7 + 3)3 = 103 = 1000
2. a) 2x2 + 3x - 5 = 0
=> 2x2 + 5x - 2x - 5 = 0
=> x(2x + 5) - (2x + 5) = 0
=> (x - 1)(2x + 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
b) 2x2 - 11x - 51 = 0
=> 2x2 - 17x + 6x - 51 = 0
=> x(2x - 17) + 3(2x - 17) = 0
=> (x + 3)(2x - 17) = 0
=> \(\orbr{\begin{cases}x+3=0\\2x-17=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=\frac{17}{2}\end{cases}}\)
a) 1012 - 992 = (101-99)(101+99)= 2,200 = 4002
b)98.102 = (100-2)(100+2) = 1002 - 22 =10000 - 4 = 9996
c) 772 + 232 +77.46 = 772 + 232 +2.77.23 = ( 77+23)2 = 1002 =1000
d) Với x=7 => M = 73+ 9.73 + 27.7 + 27 = 10.73 +27.8 = 10.343 + 216 = 3430+216 = 3646
2. a) 2x2 + 3x -5 =0
=> 2(x2 +3/2 x +9/16) -49/8 = 0
=> 2 (x+3/4)2 =49/8
=> (x+3/4)2 =49/16 = (7/4)2 = (-7/4)2
=> x+3/4 = 7/4 hoặc x+3/4 = -7/4
=> x= 1 hoặc x=-5/2
b) 2x2 -11x - 51 =0
=> 2(x2 -11/2x + 121/16) -529/8 = 0
=> (x -11/4)2 = 529/16 = (23/4)2 =(-23/4)2
=> x-11/4=23/4 hoặc x-11/4 = -23/4
=> x=17/2 hoặc x=-3
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
a/ đề sai chữa lại nha :
\(8+12x+6x^2+x^3=2^3+3.2^2.x+3.2.x^2+x^3=\left(2+x\right)^3\)
b/ đề bị lộn dấu ngay chỗ 3x và 3x^2
\(-x^3-3x^2+3x+1=1+3x-3x^2-x^3=1+3.\left(-1\right)^2.x+3x^2.\left(-1\right)+\left(-x\right)^3=\left(1-x\right)^3\)
c/ \(x^3+9x^2+27x+27=x^3+3.3.x^2+3.3^2.x+3^3=\left(x+3\right)^3\)
T I C K ủng hộ nha
CHÚC BẠN HỌC TỐT
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
a) \(\left(x-10\right)^2-x\left(x+80\right)\)
\(=x^2-20x+100-x^2-80x\)
\(=-100x+100\)
Thay x=0,98...................................................
b) tương tự phần a
c)\(4x^2-28x+49\)
=\(\left(2x\right)^2-2.2x.7+7^2\)
=(2x-7)2
d) cũng là hằng đăgr thức
a)\(\left(x-10\right)^2-x\cdot\left(x+80\right)\)với x = 0,98
=\(x^2-2\cdot x\cdot10+10^2\)\(-x^2-80x\)
=\(x^2-20x+100-x^2-80x\)
=\(-100x+100\)
=\(-100\cdot0,98+100\)
=\(2\)
b)\(\left(2x+9\right)^2-x\cdot\left(4x+31\right)\)với x=-16,2
=\(\left(2x\right)^2+2\cdot2x\cdot9+9^2-4x^2-31x\)
=\(4x^2+36x+81-4x^2-31x\)
=\(5x+81\)
=\(5\cdot\left(-16,2\right)+81\)
=\(0\)
c)\(4x^2-28x+49\)với x=4
=\(\left(2x\right)^2-2\cdot2x\cdot7+7^2\)
=\(\left(2x-7\right)^2\)
=\(\left(2\cdot4-7\right)^2\)
=\(1\)
Sorry câu d mình không biết
b1 A=10000 B=23386
b2 a,x=5
b,x=4 x=2
có lẽ bn nên tự lm thì hơn
a: \(x^2-10x=-25\)
\(\Leftrightarrow x-5=0\)
hay x=5
b: \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)