Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1: 20^2-12^2=256=16^2=>chiều dài=16 inh-sơ
b2:5^2+10^2=125=>dường chéo=căn bậc hai của 125
tick nha ^-^
Một mặt bàn hình chữ nhật có chiều dài 2 dm chiều rộng 9 cm người ta muốn viền quanh mặt bàn bằng thanh nhôm . hỏi thanh nhôm đó dài bao nhiêu cm
AB = 13 cm, BC = 21 cm.
Từ đó, chu vi của tam giác ABC là 54 cm.
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HB^2=AB^2\)
\(AB^2=12^2+5^2=144+25=169\)
\(AB=\sqrt{169}=13cm\)
Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HC^2=AC^2\)
\(HC^2=AC^2-HA^2\)
\(HC^2=20^2-12^2\)
\(HC^2=400-144=256\)
\(HC=\sqrt{256}=16cm\)
\(H\in BC\)
\(\Rightarrow HB+HC=BC\)
hay \(BC=5+16=21cm\)
b, Chu vi tam giác ABC = \(20+21+13=54cm\)
a, Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=13cm\)
Theo định lí Pytago tam giác ẠHC vuông tại H
\(HC=\sqrt{AC^2-AH^2}=16cm\)
-> BC = HB + HC = 5 + 16 = 21 cm
b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)
Áp dụng định lí Py-ta-go, ta có chiều dài là:
\(\sqrt{20^2-12^2}=\sqrt{400-144}=\sqrt{256}=16\)\(inch\)
Vậy chiều dài màn hình là 16 inch
Áp dụng định lí Py-ta-go, ta có chiều dài là:
√202−122=√400−144=√256=16inch202−122=400−144=256=16inch
Vậy chiều dài màn mình của một máy thu hình là 16 inch
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)