Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 + 2x + 2)(x2 - 2x + 2)
b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 = (x + 2)(x + 5)(x + 3)(x + 4) - 24
= (x2 + 7x + 10)(x2 + 7x + 12) - 24
Đặt x2 + 7x + 10 = y => y(y + 2) - 24 = y2 + 2y - 24
= y2 + 6y - 4y - 24 = (y - 4)(y + 6) = (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)
= (x2 + 7x + 6)(x2 + 7x + 16) = (x2 + x + 6x + 6)(x2 + 7x + 16) = (x + 1)(x + 6)(x2 + 7x + 16)
\(b,x^3-2x^2-4xy^2+x\)
\(=x\left(x^2-2x-4y^2+1\right)\)
\(=x\left[\left(x^2-2x+1\right)-4y^2\right]\)
\(=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)
\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)
\(=x\left(x-2y-1\right)\left(x+2y-1\right)\)
\(---\)
\(c,\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\) (1)
Đặt \(y=x^2+7x+10\), thay vào (1) ta được:
\(y\left(y+2\right)-8\)
\(=y^2+2y+1-9\)
\(=\left(y+1\right)^2-3^2\)
\(=\left(y+1-3\right)\left(y+1+3\right)\)
\(=\left(y-2\right)\left(y+4\right)\)
\(=\left(x^2+7x+10-2\right)\left(x^2+7x+10+4\right)\)
\(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
#Ayumu
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=y\)
\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(y+1\right)\left(y-1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Cái này chưa học bt làm mấy câu
b. x^2 + 2x - 3
= x^2 + 3x - x - 3
= x ( x - 1 ) + 3 ( x - 1 )
= ( x + 3 ) ( x - 1 )
\(4x^2-3x-4\)
\(=\left(2x\right)^2-2.2x.\frac{3}{4}+\frac{9}{16}-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\left(\frac{\sqrt{73}}{4}\right)^2\)
\(=\left(2x-\frac{3}{4}-\frac{\sqrt{73}}{4}\right)\left(2x-\frac{3}{4}+\frac{\sqrt{73}}{4}\right)\)
\(=\left(2x-\frac{3+\sqrt{73}}{4}\right)\left(2x+\frac{-3+\sqrt{73}}{4}\right)\)
\(x^2+2x-3\)
\(=x^2-x+3x-3\)
\(=x\left(x-1\right)+3\left(x-1\right)\)
\(=\)\(\left(x+3\right)\left(x-1\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) \(\left(1\right)\)
đặt \(x^2+5x+5=t\)
\(\left(1\right)\)\(=\) \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
hay \(\left(1\right)=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
học tốt
1.2x^2+x-6=2x^2+4x-3x+6=(2x^2+4x)-(3x+6)=2x(x+2)-3(x+2)=(x+2)(2x-3)
2.x^3-9x^2+14x
=x*(x^2-9x+14)
=x*(x^2-7x-2x+14)
=x*((x^2-7x)-(2x-14))
=x*(x(x-7)-2(x-7))
=x*((x--7)(x-2))
=x*(x-7)(x-2)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t.\)Thay vào ta được :
\(\left(t+1\right)\left(t-1\right)-24\)
\(=t^2-1-24=t^2-25=\left(t+5\right)\left(t-5\right)\)
Thay \(t=x^2+7x+11\)Ta được :
\(\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
a) - Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
+ Ta có: \(A=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)
\(\Leftrightarrow A=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
- Đặt \(a=x^2+7x+10\)
+ Ta lại có: \(A=a.\left(a+2\right)-24\)
\(\Leftrightarrow A=a^2+2a-24\)
\(\Leftrightarrow A=\left(a^2-4a\right)+\left(6a-24\right)\)
\(\Leftrightarrow A=a.\left(a-4\right)+6.\left(a-4\right)\)
\(\Leftrightarrow A=\left(a-4\right).\left(a+6\right)\)
- Thay \(a=x^2+7x+10\)vào phương trình \(A\), ta có:
\(A=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)
\(\Leftrightarrow A=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
^_^ Chúc bạn hok tốt ^_^ !!#@##