Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
Đặt vế đầu là A, vế sau là B.
Vế A:
- Tử:
\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
\(=100\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
\(=100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{98}+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Vậy:
\(A=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ =\dfrac{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ \Rightarrow A=50\)
Vế B:
- Tử:
\(92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\\ =\dfrac{40}{45}+\dfrac{40}{50}+...+\dfrac{40}{500}\\ =40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)\)
Vậy:
\(B=\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\\ =\dfrac{40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{500}}\\ \Rightarrow B=40\)
Từ 2 vế trên ta tính được \(\dfrac{A}{B}=\dfrac{50}{40}=\dfrac{5}{4}\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)