Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)
Vậy A < 2
Bài 3:
D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)
\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)
Bài 4:
A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)
\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)
\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)
\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)
=1/57
b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)
=1/41
c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)
=1-1+1/107
=1/107
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
các bạn ơi giúp mìh với mìh đag cần gấp ai nhanh và đúng thì mih tick cho
\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
Bài 1:
a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)
b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)
\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)
c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)