\(\frac{1}{1x2}+\frac{1}{2x3}+......+\frac{1}{99x100}\)

c, C = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)

\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)

\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)

\(B=\frac{199}{100}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)

\(C=1-\frac{1}{n+1}\)

\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)

10 tháng 8 2016

Áp dụng công thức tình dãy số ta có :

\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

8 tháng 3 2017

là 99/100

8 tháng 3 2017

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\) 

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

5 tháng 7 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

   \(=1-\frac{1}{100}\)

   \(=\frac{99}{100}< 1\Rightarrowđpcm\)

5 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Mà : \(\frac{99}{100}< 1\)

Vậy : S < 1

7 tháng 2 2020

H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

   \(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

          = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

          = \(1-\frac{1}{100}\)

           = \(\frac{99}{100}\)

Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)

          = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)

          = \(\frac{1}{1.2}-\frac{1}{100.101}\)

          = \(\frac{1}{2}-\frac{1}{10100}\)

          = \(\frac{5049}{10100}\)

=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)

Thay G,K vào H ta có :

H = \(\frac{99}{100}-\frac{5049}{20200}\)

Tự tính :)

7 tháng 2 2020

\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

19 tháng 6 2018

a) \(\frac{2^{12}x3^5-4^6.9^2}{\left(2^2x3\right)^6+8^4x3^5}=\frac{2^{12}x3^5+\left(2^2\right)^6x\left(3^2\right)^2}{2^{12}x3^6+\left(2^3\right)^4x3^5}\)

\(=\frac{2^{12}x3^5-2^{12}x3^4}{2^{12}x3^6+2^{12}x3^5}=\frac{2^{12}x3^4x\left(3-1\right)}{2^{12}x3^5x\left(3+1\right)}\)

\(=\frac{2}{3.4}=\frac{1}{3.2}=\frac{1}{6}\)

b) \(\frac{1}{9x10}-\frac{1}{8x9}-\frac{1}{7x8}-\frac{1}{6x7}-\frac{1}{5x6}-\frac{1}{4x5}-\frac{1}{3x4}-\frac{1}{2x3}-\frac{1}{1x2}\)

\(=-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{7x8}+\frac{1}{8x9}+\frac{1}{9x10}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=-\left(1-\frac{1}{10}\right)\)

\(=\frac{-9}{10}\)

sorry bn nha! mk ko bk lm phần c

6 tháng 10 2019

trả lời :

a) 1/6

b)-9/10

31 tháng 7 2017

Sửa đề:

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{x\times\left(x+1\right)}=\frac{9}{10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)

\(1-\frac{1}{x}=\frac{9}{10}\)

\(\frac{1}{x}=1-\frac{9}{10}=\frac{1}{10}\)

Vậy, x = 10.

Ko bt có right ko?

31 tháng 7 2017

Nhầm.

Chuyển \(1-\frac{1}{x}\)thành \(1-\frac{1}{x+1}\)

\(1-\frac{1}{x+1}=\frac{9}{10}\)

\(\frac{1}{x+1}=1-\frac{9}{10}=\frac{1}{10}\)

Vậy x = 10 - 1 = 9

Thế ms right chứ!

4 tháng 6 2017

a)(y+2):5-5x5=378

(y+2):5-25=378

(y+2):5=378+25

(y+2):5=403

(y+2)=403x5

y+2=2015

y=2015-2

y=2013

4 tháng 6 2017

(y+2):5-5.5=378

(y+2):5-25=378

(y+20)=378+25

(y+2)=403

(y+2)=403.5

y+2=2015

y=2015-2

y=2013