K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Cho mk xin yêu cầu của bài được ko vậy ???

29 tháng 4 2019

Giải các phương trình bậc 2

1 tháng 4 2022

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

1 tháng 4 2022

 3x2 + 4x = 0

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

17 tháng 10 2017

a) Phương trình bậc hai  4 x 2   +   4 x   +   1   =   0

Có a = 4; b’ = 2; c = 1;  Δ ’   =   ( b ’ ) 2   –   a c   =   2 2   –   4 . 1   =   0

Phương trình có nghiệm kép là:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Phương trình  13852 x 2   –   14 x   +   1   =   0

Có a = 13852; b’ = -7; c = 1;

Δ ’   =   ( b ’ ) 2   –   a c   =   ( - 7 ) 2   –   13852 . 1   =   - 13803   <   0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai  5 x 2   –   6 x   +   1   =   0

Có: a = 5; b’ = -3; c = 1.;  Δ ’   =   ( b ’ ) 2   –   a c   =   ( - 3 ) 2   –   5 . 1   =   4   >   0

Phương trình có hai nghiệm phân biệt:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Phương trình bậc hai: Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có hai nghiệm phân biệt :

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

a: =>(x-3)(x+1)=0

=>x=3 hoặc x=-1

b: =>x(x-3)=0

=>x=0 hoặc x=3

c: =>(x-5)(x+1)=0

=>x=5 hoặc x=-1

d: =>5x^2+7x-5x-7=0

=>(5x+7)(x-1)=0

=>x=1 hoặc x=-7/5

e: =>x^2-4=0

=>x=2 hoặc x=-4

h: =>x^2-4x+4-3=0

=>(x-2)^2=3

=>\(x=2\pm\sqrt{3}\)

22 tháng 3 2023

Thank 🥲

4 tháng 11 2017

a)  5 x 2   –   x   +   2   =   0 ;

a = 5; b = -1; c = 2

Δ   =   b 2   -   4 a c   =   ( - 1 ) 2   -   4 . 5 . 2

= 1 - 40 = -39 < 0

Vậy phương trình trên vô nghiệm.

b) 4 x 2   –   4 x   +   1   =   0 ;

a = 4; b = -4; c = 1

Δ   =   b 2   -   4 a c   =   ( - 4 ) 2 -   4 . 4 . 1   =   16   -   16   =   0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

c)  - 3 x 2   +   x   +   5   =   0

a = -3; b = 1; c = 5

Δ   =   b 2   -   4 a c   =   12   -   4 . ( - 3 ) . 5   =   1   +   60   =   61   >   0

⇒ Do Δ >0 nên áp dụng công thức nghiệm, phương trình có 2 nghiệm phân biệt

x 1   =   ( 1   -   √ 61 ) / 6 ;   x 2   =   ( 1   +   √ 61 ) / 6

Bài 1:

a) \(\Delta=b^2-4ac=\left(-5\right)^2-4\cdot2\cdot1=25-8=17\)

Vì Δ>0 nên phương trình \(2x^2-5x+1=0\) có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{5-\sqrt{17}}{2\cdot2}=\frac{5-\sqrt{17}}{4}\\x_2=\frac{5+\sqrt{17}}{2\cdot2}=\frac{5+\sqrt{17}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5-\sqrt{17}}{4};\frac{5+\sqrt{17}}{4}\right\}\)

b) Ta có: \(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

hay \(x=-\frac{1}{2}\)

Vậy: \(S=\left\{\frac{-1}{2}\right\}\)

c) Ta có: \(-3x^2+2x+8=0\)

\(\Leftrightarrow-3x^2+6x-4x+8=0\)

\(\Leftrightarrow-3x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-3x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\-3x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{-4}{3}\right\}\)

d) Ta có: \(5x^2-6x-1=0\)

\(\Delta=b^2-4\cdot a\cdot c=\left(-6\right)^2-4\cdot5\cdot\left(-1\right)=56\)

Vì Δ>0 nên phương trình \(5x^2-6x-1=0\) có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{6-\sqrt{56}}{2\cdot5}=\frac{3-\sqrt{14}}{5}\\x_2=\frac{6+\sqrt{56}}{2\cdot5}=\frac{3+\sqrt{14}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3-\sqrt{14}}{5};\frac{3+\sqrt{14}}{5}\right\}\)

e) Ta có: \(-3x^2+14x-8=0\)

\(\Leftrightarrow-3x^2+12x+2x-8=0\)

\(\Leftrightarrow-3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\-3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\-3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\frac{2}{3}\right\}\)

g) Ta có: \(-7x^2+4x-3=0\)

\(\Delta=b^2-4ac=4^2-4\cdot\left(-7\right)\cdot\left(-3\right)=-68\)

Vì Δ<0 nên phương trình \(-7x^2+4x-3=0\) không có nghiệm

Vậy: S=∅

21 tháng 6 2020

Cảm ơn nhá

J
18 tháng 4 2019

a) \(3x^2-5x+2=0\)

\(a+b+c=3-5+2=0\)

\(\Rightarrow\) pt co 2 ngiệm pb : \(x_1=1\) ; \(x_2=\frac{2}{3}\)

Vậy \(S=\left\{1;\frac{2}{3}\right\}\)

b) \(-3x^2+14x-8=0\)

\(\Delta'=7^2-\left(-3\right)\times\left(-8\right)=49-24=25\)

\(\Rightarrow\) pt có 2 nghiệm pb : \(x_1=4\) ; \(x_2=\frac{2}{3}\)

Vậy \(S=\left\{4;\frac{2}{3}\right\}\)

9 tháng 3 2023

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

9 tháng 3 2023

Phần b: 

Vậy pt có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-4}{2.4}=-\dfrac{1}{2}\)