Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n^2+13n-12n-156+143⋮n+13\)
\(\Leftrightarrow n+13\in\left\{1;-1;11;-11;13;-13;143;-143\right\}\)
hay \(n\in\left\{-12;-14;-2;-24;0;-26;130;-156\right\}\)
b: \(\Leftrightarrow n^2-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)
\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)
\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Ta có: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}\)
\(=\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2.n.\left(n+1\right)}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{n.\left(n+1\right)}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
ta có: 4n + 3\(⋮\)n - 1
\(\Leftrightarrow\)4n - 4 + 7 \(⋮\)n - 1
\(\Leftrightarrow\)4(n - 1) + 7 \(⋮\)n - 1
mà 4(n - 1) \(⋮\)n - 1
nên 7 \(⋮\)n - 1
vậy \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
vì \(n\in N\)nên ta xét bảng sau:
n - 1 | n |
1 | 2 |
-1 | 0 |
7 | 8 |
Vậy \(n\in\left\{2;0;8\right\}\)
suy ra 4n-4+17 chia hết cho n-1
mà 4n-4 chia hết cho n-1
suy ra 17 chia hết n-1
suy ra n-1 thuộc ước của 17
suy ra n-1 thuộc các giá trị 1:-1:17:-17
suy ra n thuộc các giá trị 2 :0;18;-16 mà n thuộc N suy ra n = 2;0;18
\(B=1+\dfrac{1}{13}+\dfrac{1}{13^2}+...+\dfrac{1}{13^n}\)
\(=>13B=13+1+\dfrac{1}{13}+...+\dfrac{1}{13^{n-1}}\)
\(=>13B-B=13-\dfrac{1}{13^n}\)
\(=>12B=\dfrac{13^{n+1}-1}{13^n}\)
\(=>B=\dfrac{13^{n+1}-1}{13^n.12}\)
\(#Nttnam\)