Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Rightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy x = 2
b) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Rightarrow-3x=-48\)
\(\Leftrightarrow x=16\)
Vậy x = 16
c) \(\dfrac{1}{9}=\dfrac{-2x}{10}\)
\(\Rightarrow-18x=10\)
\(\Leftrightarrow x=-\dfrac{5}{9}\)
Vậy \(x=-\dfrac{5}{9}\)
d) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{x}-5=\dfrac{-9}{x}+2\)
\(\Leftrightarrow\dfrac{3-5x}{x}=\dfrac{-9+2x}{x}\)
\(\Rightarrow3-5x=-9+2x\)
\(\Leftrightarrow7x=12\)
\(\Leftrightarrow x=\dfrac{12}{7}\)
Vậy \(x=\dfrac{12}{7}\)
e) ĐKXĐ: \(x\ne0\)
\(\dfrac{x}{-2}=\dfrac{-8}{x}\)
\(\Rightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Vậy \(x=\pm4\)
a) Ta có: \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2\cdot5}{5}=2\)
Vậy: x=2
b) Ta có: \(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Leftrightarrow-x=\dfrac{6\cdot\left(-8\right)}{3}=-16\)
hay x=16
Vậy: x=16
a) Thế x và y ta có:
\(-2.\left(-3\right)-5+11+3.\left(-3\right)\)
\(=6-5+11-9=3\)
b) Thế x và y ta có:
\(2.5-3.\left(-3\right)+5\left(5-\left(-3\right)\right)+15\)
\(=10+9+5\left(5+3\right)+15\)
\(=10+9+40+15=74\)
c) Thế x và y ta có:
\(4.\left(-3\right)-4\left(-3-2.5\right)-7\left(5-2\right)\)
\(=-12-4.\left(-13\right)-7.3\)
\(=-12+52-21=19\)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
a) |x-3|+|y+4|=1
Xét : \(\hept{\begin{cases}|x-3|\ge0\\|y+4|\ge0\end{cases}}\)
Mà : \(|x-3|+|y+4|=1\)
=) Ix-3I=0 và |y+4|=1 hoặc |y+4|=0 và Ix-3I=1
Nếu : |y+4|=0 và Ix-3I=1
=) |y+4|=0
= ) y + 4 = 0
= ) y = 0 - 4 = -4
=) Ix-3I=1
=) \(\hept{\begin{cases}x-3=-1\\x-3=1\end{cases}}\)=) \(\hept{\begin{cases}x=-1+3=2\\x=1+3=4\end{cases}}\)
Nếu : Ix-3I=0 và |y+4|=1
=) Ix-3I=0
=) x-3=0
=) x = 0 + 3 = 3
=) |y+4|=1
=) \(\hept{\begin{cases}y+4=1\\y+4=-1\end{cases}}\)=)\(\hept{\begin{cases}y=1-4=-3\\y=-1-4=-5\end{cases}}\)
a.x(y+2) = 8
Tích x(y+2) có thể bằng các tích sau : 2.4 ; 8 . 1
Nếu tích x(y+2) = 2.4 thì :
+ Để vế trong ngoặc tròn bằng 4 thì y = 2
+ Để vế trong ngoặc tròn bằng 2 thì y = 0
Nếu vế trong ngoặc tròn có giá trị bằng 4 thì x = 2
Nếu vế trong ngoặc tròn có giá trị bằng x = 4
C2 : Tích x(y+2) có thể có giá trị bằng 1 . 8 thì :
+ Để vế trong ngoặc có giá trị bằng 8 thì y = 6
( Vế trong ngoặc không thể có giá trị bằng 1 )
Nếu giá trị trong ngoặc tròn có giá trị bằng 8 thì x = 1
Dzặ mìn tự giải =) Sai đâu xin lỗi nhaaa
- Các phần khác làm tương tự =))
tks bn nha