K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

1/  196

2/  5/4

3/  1/3

 

3 tháng 1 2019

A=3x-17/4-x

=>(-1)A=17-3x/4-x

=>(-1)A=12-3x+5/4-x

=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)

Để A có GTNN=>-3-(5/4-x) có GTNN 

=>5/4-x có GTLN

=>4-x có GTNN =>=>4-x=-5=>x=9

=>A=3.9-17/4-9

=>A=10/-5

=>A=-2

Vậy..........

3 tháng 1 2019

GTNN là gì vậy

A=\(\frac{3.\left(x-2\right)-7}{x-2}=1-\frac{7}{x-2}\)

Để Amin \(\Rightarrow\)\(1-\frac{7}{x-2}\)min \(\Rightarrow\)\(\frac{-7}{x-2}\)min \(\Rightarrow x-2m\text{ax}\)

Xét x-2<0 

A<1 \(\Rightarrow\)\(\frac{-7}{x-2}\) lớn nhất (1) 

Xét x-2>0

A<1 \(\Rightarrow x-2nn\Rightarrow x-2=1\Rightarrow x=3\)(2)

từ 1 và 2 suy ra Min A=-4 khi x=3

\(\left|x-3\right|\ge0\)

\(\left|x+4\right|\ge0\)

\(\Rightarrow B\ge0\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)

Vậy.....

15 tháng 4 2019

Khuyển Dạ Xoa  b) bạn sai rồi,thay x = 3 hoặc x = -4 xem có ra 0 hay không?

\(B=\left|x-3\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\ge\left|3-x+x+4\right|=7\)

Dấu "=" xảy ra khi \(\left(3-x\right)\left(x+4\right)\ge0\Leftrightarrow\left(x-3\right)\left(x+4\right)\le0\Leftrightarrow-4\le x\le3\)

Vậy ...

nhanh lên các bạn

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)