Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)
\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)
Vậy minB(x)=-65/4 khi x=5/2
\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)
\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)
\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)
Vậy maxC(x)=1/4 khi x=-1/2
\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)
\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)
\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)
Vì \(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x
=>A(x) vô nghiệm (đpcm)
A=\(\frac{3.\left(x-2\right)-7}{x-2}=1-\frac{7}{x-2}\)
Để Amin \(\Rightarrow\)\(1-\frac{7}{x-2}\)min \(\Rightarrow\)\(\frac{-7}{x-2}\)min \(\Rightarrow x-2m\text{ax}\)
Xét x-2<0
A<1 \(\Rightarrow\)\(\frac{-7}{x-2}\) lớn nhất (1)
Xét x-2>0
A<1 \(\Rightarrow x-2nn\Rightarrow x-2=1\Rightarrow x=3\)(2)
từ 1 và 2 suy ra Min A=-4 khi x=3
\(\left|x-3\right|\ge0\)
\(\left|x+4\right|\ge0\)
\(\Rightarrow B\ge0\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)
Vậy.....
Khuyển Dạ Xoa b) bạn sai rồi,thay x = 3 hoặc x = -4 xem có ra 0 hay không?
\(B=\left|x-3\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\ge\left|3-x+x+4\right|=7\)
Dấu "=" xảy ra khi \(\left(3-x\right)\left(x+4\right)\ge0\Leftrightarrow\left(x-3\right)\left(x+4\right)\le0\Leftrightarrow-4\le x\le3\)
Vậy ...