K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\left(x-2\right)\left(x^4+2x^3+4x^2+8x+16\right)\)

\(=x^4+2x^3+4x^2+8x+16\)

\(=3^4+2\cdot3^3+4\cdot3^2+8\cdot3+16\)

\(=81+54+36+24+16\)

\(=211\)

11 tháng 7 2022

khó

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

7 tháng 8 2021

undefined

undefined

14 tháng 1 2019

Ta có

A   =   x 4   +   2 x 3   –   8 x   –   16     =   ( x 4   –   16 )   +   ( 2 x 3   –   8 x )   =   ( x 2   –   4 ) ( x 2   +   4 )   +   2 x ( x 2   –   4 )     =   ( x 2   –   4 ) ( x 2   +   2 x   +   4 )

 

Ta có

x 2   +   2 x   +   4   =   x 2   +   2 x   +   1   +   3   =   ( x   +   1 ) 2   +   3   ≥   3   >   0 ,   Ɐ x     M à   | x |   <   2   ⇔   x 2   <   4   ⇔   x 2   –   4   <   0

Suy ra A = ( x 2   –   4 ) ( x 2   +   2 x   +   4 ) < 0 khi |x| < 2

Đáp án cần chọn là: C

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

27 tháng 8 2021

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(x^2-3y^2=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)

\(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]=\left(3x-3y-2x+2y\right)\left(3x-3y+2x+2y\right)=\left(x-y\right)\left(5x-y\right)\)

\(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

\(27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

\(125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

a: \(x^4-y^4=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

c: \(9\left(x-y\right)^2-4\left(x+y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

d: \(\left(4x^2-4x+1\right)-\left(x+1\right)^2=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\)

\(=3x\left(x-2\right)\)

e: \(x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)

23 tháng 10 2021

\(1,\\ a,=\left[x^3\left(x-2\right)-4x\left(x-2\right)\right]:\left(x^2-4\right)\\ =x\left(x^2-4\right)\left(x-2\right):\left(x^2-4\right)=x\left(x-2\right)\\ b,=\left(2014-14\right)^2=2000^2=4000000\\ 2,\\ A=2015\cdot2013\cdot\left(2014^2+1\right)\\ A=\left(2014^2-1\right)\left(2014^2+1\right)\\ A=2014^4-1< B=2014^4\)

24 tháng 8 2020

a) \(\left(x^3+3x^2-8x-20\right)\div\left(x+2\right)\)

\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(10x+20\right)\right]\div\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x-10\right)\div\left(x+2\right)\)

\(=x^2+x-10\) \(\left(x\ne-2\right)\)

b,c bn tự đặt chia

6 tháng 10 2021

không giúp