Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có \(17⋮\left(2a+3\right)\)
\(\Rightarrow\left(2a+3\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng
2a+3 | -17 | -1 | 1 | 17 |
2a | -20 | -4 | -2 | 14 |
a | -10 | -2 | -1 | 7 |
Vậy...
Chúc bn học tốt!
#TM
B2 :
Theo bài ra,ta có : \(x-1⋮x+6\)
\(\Rightarrow x+6-7⋮x+6\)
Mà \(x+6⋮x+6\)
\(\Rightarrow7⋮x+6\)
\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để \(x-1⋮x+6\)
b) Theo bài ra, ta có : A nhỏ nhất
\(\Rightarrow\left|3a-1\right|\)nhỏ nhất
Mà \(\left|3a-1\right|\ge0\)
\(\Rightarrow\left|3a-1\right|=0\)
\(\Rightarrow A=0-5\)
\(\Rightarrow A=-5\)
Vậy A có GTNN là -5
Theo bài ra, ta có A nhỏ nhất :
=> | 3a - 1 | nhỏ nhất
Mà 3a - 1 > 0
=> | 3a - 1 | = 0
=> 3a - 1 = 0
=> 3a = 0 + 1
=> 3a = 1
=> a = 1 : 3
Mà 1 lại không chia hết cho 3
=> \(a\in\varnothing\)
Vậy ko tìm đc GTNN của A
a) Vì (x-1) 2 \(\ge0,\forall x\)
suy ra (x-1) 2 -14 \(\ge-14,\forall x\)
Vây A \(\ge-14,\forall x\)
GTNN của A = -14 khi và chỉ khi x=1
b) 6n2 +3n - 7 chia hết cho 2n+1
suy ra 3n(2n+1) - 7 chia hết cho 2n+1
Vì 3n. (2n+1) chia hết cho 2n +1
suy ra -7 chia hết cho 2n+1
suy ra 2n+1 thuộc {1;-1;7;-7}
2n thuộc {0; -2; 6; -8}
suy ra n thuộc {0; -1; 3; -4}
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
b)A=\(\left|2x-6\right|\)+7
Do \(\left|2x-6\right|\)\(\ge\)0 với mọi x\(\inℝ\)
=>\(\left|2x-6\right|\)+7\(\ge\)7 với mọi x\(\inℝ\)
Dấu bằng xảy ra <=>2x-6=0 <=> 2 x = 6 <=> x=3
Vậy minA=7 tại x=3