K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

a) Vì (x-1) 2 \(\ge0,\forall x\)

suy ra (x-1) 2 -14 \(\ge-14,\forall x\)

Vây A \(\ge-14,\forall x\) 

GTNN của A = -14 khi và chỉ khi x=1

b) 6n2 +3n - 7 chia hết cho 2n+1

suy ra  3n(2n+1) - 7 chia hết cho 2n+1

Vì 3n. (2n+1) chia hết cho 2n +1

suy ra -7 chia hết cho 2n+1

suy ra 2n+1 thuộc {1;-1;7;-7}

2n thuộc {0; -2; 6; -8}

suy ra n thuộc {0; -1; 3; -4}

24 tháng 6 2016

Giúp với

24 tháng 6 2016

Giúp với

23 tháng 5 2018

\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để A có giá trị nhỏ nhất thì \(2-\frac{5}{3n+2}\)nhỏ nhất \(\Leftrightarrow\)\(\frac{5}{3n+2}\)lớn nhất \(\Leftrightarrow\)3n + 2 nhỏ nhất là 3n + 2 > 0 \(\Leftrightarrow\)3n + 2 = 1 

\(\Rightarrow\)\(n=\frac{-1}{3}\)

Vây giá trị nhỏ nhất của A là : \(\frac{6.\left(\frac{-1}{3}\right)-1}{3.\left(\frac{-1}{3}\right)+2}=\frac{-3}{1}=-3\)

18 tháng 3 2020

B2 :

Theo bài ra,ta có : \(x-1⋮x+6\)

\(\Rightarrow x+6-7⋮x+6\)

Mà \(x+6⋮x+6\)

\(\Rightarrow7⋮x+6\)

\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để  \(x-1⋮x+6\)

b) Theo bài ra, ta có : A nhỏ nhất

\(\Rightarrow\left|3a-1\right|\)nhỏ nhất

Mà \(\left|3a-1\right|\ge0\)

\(\Rightarrow\left|3a-1\right|=0\)

\(\Rightarrow A=0-5\)

\(\Rightarrow A=-5\)

Vậy A có GTNN là -5

Theo bài ra, ta có A nhỏ nhất :

=> | 3a - 1 | nhỏ nhất

Mà 3a - 1  > 0

=> | 3a - 1 | = 0

=> 3a - 1 = 0

=> 3a = 0 + 1

=> 3a = 1

=> a = 1 : 3

Mà 1 lại không chia hết cho 3 

=> \(a\in\varnothing\)

Vậy ko tìm đc GTNN của A

3 tháng 3 2020

mọi người ơi giúp mình với mình đang cần gấp

3 tháng 3 2020

A = (x - 5) + (x - 5 + x) - (5 - x + 5) với x = -3

Thay x = -3 vào biểu thức:

A = [(-3) - 5) + [(-3) - 5 + (-3)] - [5 - (-3) + 5]

A = -32

25 tháng 2 2020

\(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(2-\frac{5}{3n+2}\)đạt GTNN thì \(\frac{5}{3n+2}\)đạt GTLN

Để \(\frac{5}{3n+2}\)đạt GTLN thì \(\frac{5}{3n+2}\) phải số nguyên âm nhỏ nhất và là ước của 5

\(\Rightarrow3n+2=-1\)thì \(\frac{5}{3n+2}=-5\)là ước nguyên âm nhỏ nhất của 5

\(\Rightarrow3n=-3\)

\(\Rightarrow n=-1\left(tm\right)\)