K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b. \(N=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2012\)\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2012\)

\(=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2012\)

\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\) (*)

Thay x + y =101 vào biểu thức (*) ta được:

\(N=101^3-3.101^2+3.101+2012\)

= 1002013

6 tháng 6 2017

Câu a ko hỉu đề!

Câu b:

Ta có: N = \(x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2012\)

= \(\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2012\)

= \(\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\)

= \(\left(x+y-1\right)^3+2013\)

Thay x + y = 101 vào N ta được:

N = 1003 + 2013 = 1002013

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

12 tháng 7

1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1) 

Thay \(x=99\) vào (1) ta có:

4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501

 

 

22 tháng 9 2017

B= x2(y-z)+y2(z-x)+z2(x-y)

= x2(y-z)+y2z-xy2+xz2-yz2

= x2(y-z)+yz(y-z)-x(y2-z2)

= x2(y-z)+yz(y-z)-x(y-z)(y+z)

= (y-z)(x2+yz -xy -xz)

= (y-z)[x(x-y)-z(x-y)]

= (y-z)(x-y)(x-z)

29 tháng 6 2018

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

22 tháng 12 2023

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

30 tháng 9 2017

P = 3x2 - 2x + 3y2 - 2y + 6xy - 100

= (3x2 + 6xy + 3y2) - (2x + 2y) - 100

= 3(x2 + 2xy + y2) - 2(x + y) - 100

= 3(x + y)2 - 2.5 - 100

= 3. 52 -10 - 100

= 75 - 10 - 100 = -35

Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10

= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10

= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10

= (x + y)3 - 2(x2 + 2xy + y2) + 25

= 53 - 2(x + y)2 +25

= 125 - 2. 52 + 25

= 125 - 50 + 25 = 100

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

27 tháng 6 2018

\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có

\(B=\left(101-1\right)^3+2013=1002013\)