K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

21 tháng 8 2016

Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

            \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

14 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

14 tháng 10 2021

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

11 tháng 12 2019

a)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)

c)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)

\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{5b^2}{5d^2}=\frac{2a^2}{2c^2}=\frac{7ab}{7cd}\)

\(=\frac{3a^2+5b^2}{3c^2+5d^2}=\frac{2a^2+7ab}{2c^2+7cd}\) ( tích chất dãy tỉ số bằng nhau )

13 tháng 6 2018

1.Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\) 

 Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

2.a)   Từ 2a=5b=3c suy ra \(\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\Rightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)

Khi đó: \(\frac{a}{15}=-4\Rightarrow a=-4.15=-60\)

\(\frac{b}{6}=-4\Rightarrow b=-4.6=-24\)

\(\frac{c}{10}=-4\Rightarrow c=-40\)

Vậy a=-60;b=-24;c=-40

b) Từ 4x=5y suy ra\(\frac{x}{5}=\frac{y}{4}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=k\)  suy ra x=5k;y=4k

Ta có : 5k.4k=80

           \(\Rightarrow20k^2=80\)

            \(\Rightarrow k^2=4\)

            \(\Rightarrow k=\pm2\)

Với k=2 thì x=5.2=10; y=4.2=8

Với k=-2 thì x=5-(-2)=-10; y=4.(-2)=-8

3. Ta có : |x-2011|+|x-200|=|-x+2022|+|x-200|

Áp dụng t/c của công thức |a|+|b|\(\ge\)|a+b| ta có

\(\left|-x+2011\right|+\left|x-200\right|\ge\left|-x+2011+x-200\right|=1811\)

Dấu "=" xảy ra khi và chỉ khi : (-x+2011)(x-200)\(\ge0\)

Suy ra : \(\orbr{\begin{cases}\hept{\begin{cases}-x+2011\ge0\\x-200\ge0\end{cases}}\\\hept{\begin{cases}-x+2011\le0\\x-200\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le2011\\x\ge200\end{cases}}\\\hept{\begin{cases}x\ge2011\\x\le200\end{cases}}\end{cases}\Rightarrow}200\le x\le2011\frac{ }{ }\)

Vậy GTNN của A bằng 1811 khi và chỉ khi  \(200\le x\le2011\)

4.đề bài thiếu hả ?

13 tháng 6 2018

1/ Đặt :

\(\frac{a}{b}=\frac{c}{d}=k\) \(\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\left(1\right)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

2/ \(2a=5b=3c\)

\(\Leftrightarrow\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\)

\(\Leftrightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=-4\\\frac{b}{6}=-4\\\frac{c}{10}=-4\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-60\\b=-24\\c=-40\end{cases}}\)

Vạy ...

b/ \(4x=5y\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)

Đặt : \(\frac{x}{5}=\frac{y}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)

Lại có : \(xy=80\)

\(\Leftrightarrow5k.4k=80\)

\(\Leftrightarrow20k=80\)

\(\Leftrightarrow k=4\)

\(\Leftrightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\end{cases}}\)

Vậy ...