Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có MN // BC (M thuộc AB, N thuộc AC)
S(ACM)/S(ABC) = AM/AB (1)
S(ABN)/S(ABC) = AN/AC (2)
Mà S(ACM) = S(AMN) + S(CMN) (3)
và S(ABN) = S(AMN) + SBMN) (4)
Mặt khác do MNCB hình thang nên dễ dàng chứng minh
S(CMN) = S(BMN) (5)
Từ (3) , (4) và (5) cho:
S(ACM) = S(ABN) (6)
(1) , (2) và (6) cho:
AM/AB = AN/AC (đpcm)
-----------
Cách viết S(ABC) đọc là diện tích tam giác ABC
x1^2 -x2^2 = (x1 -x2).(x1+x2)
Sau đó bạn dùng viet thay vào pt trên r tính. Thực ra cái này nó phải tuỳ thuộc vào đề bài bạn ạ :)
\(X_1^2-X_2^2=\left(X_1+X_2\right).\left(X_1-X_2\right)=\left(X_1+X_2\right).\sqrt{\left(X_1-X_2\right)^2}.\)
\(=\left(X_1+X_2\right).\sqrt{\left(X_1+X_2\right)^2-4X_1.X_2}\)
Ta có: \(\sqrt{a^2}\ge0\Rightarrow\left(\sqrt{a^2}\right)^2=a^2\)
\(|a|\ge0\Rightarrow\left(|a|\right)^2=a^2\)
\(\Rightarrow\sqrt{a^2}=|a|,\forall a\in R\)
áp dụng \(A=\sqrt{\left(\sqrt{7-2}\right)^2}+\sqrt{\left(\sqrt{7-3}\right)^2}=|\sqrt{7}-2|+|\sqrt{7}-3|\)
\(=\sqrt{7}-2+3-\sqrt{7}=1\)
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
b) Áp dụng định lí pitago trong tam giác vuông OAB có:
O B 2 = O A 2 + A B 2
Từ đó ta có:
`1).`
Ta có: `AB=AD+DB=9,5+28=37,5`
`\triangle ABC` có: `DE////BC`, theo hệ quả của định lí Ta-lét:
`(AD)/(AB)=(DE)/(BC)`
`=>(9,5)/(37,5)=8/x`
`=>x=(37,5.8)/(9,5)`
`=>x=600/19`
`2).`
`\triangle OKN` có: `LM////ON` theo hệ quả của định lí Ta-lét:
`(KO)/(KM)=(KN)/(KL)=(ON)/(LM)`
`=>25/10=y/16=45/x`
`=>y/16=45/x=5/2`
Với `y/16=5/2=>y=(16.5)/2=40`
Với `45/x=5/2=>x=(45.2)/5=18`
`3).`
Ta có: `ST \bot PQ` và `RP \bot PQ`
`=>ST //// RP`
Có: `QR=QS+SR=5+3,5=8,5`
`(QT)/(QP)=(QS)/(QR)`
`=>4/y=5/(8,5)`
`=>y=(4.8,5)/5`
`=>y=6,8`
`@Nae`