Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
Chúc bạn học tốt nha!^-^
a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64
b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)= \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)= \(\frac{159422}{129152}\)> \(\frac{129088}{129152}\)
=> \(\frac{79}{64}\)> \(\frac{2017}{2018}\)
a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64
=32/64 + 16/64 + 8/64 + 4/64 + 2/64
=32+16+8+4+2/64 = 66/64= 33/32
b) ta có 33/32 > 1 và 2017/2018<1
nên 33/32 > 2017/2018
tính nhanh hộ mình câu này nha (có kèm bài làm , ai nhanh mình tick cho );
1/2+1/4+1/8+1/16+1/32+1/64
(1/2+1/8)+(1/4+1/16)+(1/8+1/32)+1/64
=1/10+1/20+1/40+1/64
=61/320
lấy 1/64 làm mẫu xố chung
1/64+2/64+4/64+8/64+12/64+32/64=59/64
D=1/2-1/32=15/32
E=1/1X2+1/2X3+1/3X4+1/4X5+1/5X6
E=1/1-1/6=5/6
K MÌNH NHA
= 128/256 + 64/256 + 32/256 + 16/256 + 8/256 + 4/256 + 2/256 + 1/256
= 255/256
gọi biểu thức là A
A=1/2+1/4+1/8+...+1/2048=1/2+1/2^2+1/2^3+...+1/2^10
=>2A=1+1/2+1/2^2+...+1/2^9
=>A=2A-A(bạn đặt cột dọc ra rồi sẽ thấy:1/2-1/2=0;1/2^2-1/2^2=0;...)Ta được kết quả bằng 1+1/2^10
Đặt A =1/2 + 1/4 + 1/8 + ...+ 1/1024 + 1/2048
A= 1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11
2A= 1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10
2A-A= (1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10) - (1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11)
A= 1+1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10 - 1/2 - 1/2^2 - 1/2^3 - ...- 1/2^10 - 1/2^11
A= 1- 1/2^11
A= 2047/ 2048
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{32}+\frac{1}{64}\)
\(\frac{32+16+8+4+2}{64}=\frac{62}{64}=\frac{31}{32}\)
Tk mh nhé , mơn nhìu !!!
~ HOK TỐT ~
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)\(+\frac{1}{64}\)
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)
A\(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)
A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)
A = \(\dfrac{127}{128}\)
Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(B=1+0-\dfrac{1}{128}\)
\(B=1-\dfrac{1}{128}\)
\(B=\dfrac{128}{128}-\dfrac{1}{128}\)
\(B=\dfrac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)