Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đăng thức minkowski có:
VT≥√(a+b+c)2+[3−(a+b+c)]2=√2(a+b+c)2−6(a+b+c)+9VT≥(a+b+c)2+[3−(a+b+c)]2=2(a+b+c)2−6(a+b+c)+9
Do đó bất đẳng thức được chứng minh khi ta chứng minh được:
√2(a+b+c)2−6(a+b+c)+9≥3√222(a+b+c)2−6(a+b+c)+9≥322
<=> 2(a+b+c)2−6(a+b+c)+9≥922(a+b+c)2−6(a+b+c)+9≥92
<=> 2(a+b+c)2−6(a+b+c)+92≥02(a+b+c)2−6(a+b+c)+92≥0
<=> [2(a+b+c)−3]22≥0[2(a+b+c)−3]22≥0
Dấu ">" xảy ra khi a+b+c=32
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\), \(0< x< 435\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\), \(0< y< 435\))
Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)
Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))
Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)
Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.
ABCHabM
Mình giải thế này nhé :))
Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => \(AM=\frac{1}{2}BC\)(vì tam giác ABC vuông)
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; \(AH=\sqrt{ab}\)(1)
Mặt khác, ta cũng có ; \(AH\le AM=\frac{BC}{2}=\frac{a+b}{2}\)(2)
Từ (1) và (2) suy ra được : \(\sqrt{ab}\le\frac{a+b}{2}\)(Đpcm)
Em không chắc lắm
\(ĐKCĐ:a+b\ne0;a+c\ne0;b+c\ne0\)
\(\frac{x-ab}{a+b}+\frac{c-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) (1)
\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)
\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)
\(\Leftrightarrow\left(x-ab-bc-ac\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)
Phương trình (1) vô số nghiệm khi và chỉ khi \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) (2)
Ví dụ ta chọn a = 1 ; b = 1. Để (2) xảy ra ta chọn c sao cho:
\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{1}{2}\Leftrightarrow c=-5\)
Vậy phương trình (1) vô số nghiệm chẳng hạn như a = 1; b = 1; c = -5
P/S: Em làm còn nhiều sai sót, mong các anh chị bỏ qua ạ
Ta có: \(\sqrt{\frac{b+c}{a}}\le\frac{1+\frac{b+c}{a}}{2}=\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)
Dấu "=" xảy ra khi a=b=c=0 (trái gt)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)(đpcm)