K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bất đăng thức minkowski có: 

VT≥√(a+b+c)2+[3−(a+b+c)]2=√2(a+b+c)2−6(a+b+c)+9VT≥(a+b+c)2+[3−(a+b+c)]2=2(a+b+c)2−6(a+b+c)+9

Do đó bất đẳng thức được chứng minh khi ta chứng minh được: 

√2(a+b+c)2−6(a+b+c)+9≥3√222(a+b+c)2−6(a+b+c)+9≥322

<=> 2(a+b+c)2−6(a+b+c)+9≥922(a+b+c)2−6(a+b+c)+9≥92

<=> 2(a+b+c)2−6(a+b+c)+92≥02(a+b+c)2−6(a+b+c)+92≥0

<=> [2(a+b+c)−3]22≥0[2(a+b+c)−3]22≥0 

Dấu ">" xảy ra khi a+b+c=32

https://vn.answers.yahoo.com/question/index?qid=20110531205223AAVlS3e

7 tháng 4 2019

Mik trả llời rồi. 30 câu

Đúng 20/30 câu

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\)\(0< x< 435\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\)\(0< y< 435\))

Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)

Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))

Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)

Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.

1 tháng 12 2015

bạn viết nhầm tọa độ điểm C rồi phải là C(1;0)

5 tháng 6 2016

ABCHabM

Mình giải thế này nhé :))

Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => \(AM=\frac{1}{2}BC\)(vì tam giác ABC vuông)

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; \(AH=\sqrt{ab}\)(1)

Mặt khác, ta cũng có ; \(AH\le AM=\frac{BC}{2}=\frac{a+b}{2}\)(2)

Từ (1) và (2)  suy ra được : \(\sqrt{ab}\le\frac{a+b}{2}\)(Đpcm)

14 tháng 7 2018

khó quá, không giải được

14 tháng 7 2018

Em không chắc lắm

\(ĐKCĐ:a+b\ne0;a+c\ne0;b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{c-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) (1)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ac\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

Phương trình (1) vô số nghiệm khi và chỉ khi \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) (2)

Ví dụ ta chọn a = 1 ; b = 1. Để (2) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{1}{2}\Leftrightarrow c=-5\)

Vậy phương trình (1) vô số nghiệm chẳng hạn như a = 1; b = 1; c = -5

P/S: Em làm còn nhiều sai sót, mong các anh chị bỏ qua ạ

10 tháng 9 2018

Ta có: \(\sqrt{\frac{b+c}{a}}\le\frac{1+\frac{b+c}{a}}{2}=\frac{a+b+c}{2a}\) 

     \(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)  

Tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) 

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\) 

Dấu "=" xảy ra khi a=b=c=0 (trái gt) 

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)(đpcm)

18 tháng 6 2015

mk mới chỉ lên lớp 6.cậu ra đềlớp mấy dzậy??