K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a) Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right)\cdot\dfrac{1}{2+\sqrt{2}}\)

=1

b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

Bài 2: 

b) Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

\(\Leftrightarrow3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)

\(\Leftrightarrow x^2-1=4\)

\(\Leftrightarrow x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

17 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a. xét \(\Delta ADN\) và \(\Delta BAM\) có

AB=AD(gt)

\(\widehat{ADN}=\widehat{BAM}=90^o\)

DN=MA(N,M là trung điểm của cạnh DC,AD)

\(\Rightarrow\Delta ADN\sim\Delta BAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{DNA}=\widehat{AMB}\)

mà:\(\widehat{DNA}+\widehat{DAN}=90^o\Rightarrow\widehat{BMA}+\widehat{DAN}=90^o\)

\(\Rightarrow\Delta MAI\) vuông tại I

\(\Rightarrow AI\perp MI\) hay \(MB\perp AN\)

b.ta có M là trung điểm của AD\(\Rightarrow AM=\dfrac{1}{2}AD=\sqrt{5}\)

trong \(\Delta MAB\) vuông tại A có

\(MB=\sqrt{AM^2+AB^2}=\sqrt{\sqrt{5^2}+\left(2\sqrt{5}\right)^2}=5\)

\(AM^2=MB.MI\Rightarrow MI=\dfrac{AM^2}{MB}=\dfrac{\sqrt{5^2}}{5^5}=0,2\)

\(AI.MB=AM.AB\Rightarrow AI=\dfrac{AM.AB}{MB}=\dfrac{\sqrt{5}.2\sqrt{5}}{5}\)=2

c.IB=MB-MI=5-0,2=4,8

\(S_{\Delta AIB}=\dfrac{AI.IB}{2}=\)\(\dfrac{2.4,8}{2}=4,8\)

\(S_{\Delta ADN}=\dfrac{AD.DN}{2}=\dfrac{2\sqrt{5}.\sqrt{5}}{2}=5\)

\(S_{\Delta ABCD}=\left(2\sqrt{5}\right)^2=20\)

\(S_{BINC}=S_{ABCD}-S_{\Delta AIB}-S_{\Delta DAN}\)=20-4,8-5=10,2

 

 

17 tháng 10 2021

Ok mình cảm ơn bạn nha

 

16 tháng 2 2022

a, \(\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\x=\dfrac{3+4y}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{13}{17}\end{matrix}\right.\)

b, Đặt x;y khác 0 

Đặt 1/x = t ; 1/y = u 

\(\left\{{}\begin{matrix}t-8u=18\\5t+4u=51\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5t-40u=90\\5t+4u=51\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-44u=39\\t=18+8u\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=-\dfrac{39}{44}\\t=\dfrac{120}{11}\end{matrix}\right.\)

Theo cách đặt y = -44/39 ; x = 11/120 (tm)

 

\(a,\\ \Leftrightarrow\left\{{}\begin{matrix}35x-28y=21_{\left(1\right)}\\35x-45y=40_{\left(2\right)}\end{matrix}\right.\\ Lấy\left(1\right)-\left(2\right),ta.đc:\\ -17y=19\Leftrightarrow y=\dfrac{-19}{17}\\ Thay.vào.\left(1\right):\\ 35x-28.\dfrac{-19}{17}=21\Leftrightarrow x=\dfrac{-5}{17}\) 

Vậy ......

\(b,\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=18+\dfrac{1}{y}\\5.\left(18+\dfrac{1}{y}\right)+\dfrac{4}{y}=51\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=18+\dfrac{1}{y}\\\dfrac{9}{y}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=18-\dfrac{13}{3}\\\dfrac{1}{y}=\dfrac{-13}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{41}{3}\\\dfrac{1}{y}=\dfrac{-13}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{41}\\y=\dfrac{-3}{13}\end{matrix}\right.\)

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

1.theo bất đẳng thức côsi ta có

\(a+b\ge2\sqrt{ab}\\ b+c\ge2\sqrt{ab}\\ c+a\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab.bc.ca}\)

                                       \(\ge8\sqrt{a^2b^2c^2}\\ \ge8abc\)

2.\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^4b^2\)

\(\dfrac{a}{a^4+b^2}\le\dfrac{a}{2a^2b}=\dfrac{1}{2ab}\)

tương tự:\(\dfrac{b}{b^4+a^2}\le\dfrac{1}{2ab}\)

\(\rightarrow\dfrac{a}{a^4+b^2}+\dfrac{b}{b^4+a^2}\le\dfrac{1}{ab}\)

dấu = xảy ra khi \(a^4=b^2\\ b^4=a^2\)\(\rightarrow a^2=b^2=1\)

30 tháng 9 2021

\(3,\\ a,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\left(x>0;x\ne1;x\ne4\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\\ b,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\\ \Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)

\(c,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\\ \Leftrightarrow P=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{\left(\sqrt{3}-1\right)\left(3\sqrt{3}-3\right)}{18}\\ P=\dfrac{12-6\sqrt{3}}{18}=\dfrac{2-\sqrt{3}}{3}\)

\(d,P\in Z\Leftrightarrow3P\in Z\Leftrightarrow\dfrac{3\sqrt{x}-6}{3\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{6}{3\sqrt{x}}\in Z\\ \Leftrightarrow6⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;6\right\}\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x\in\left\{1;4;9;36\right\}\)

30 tháng 9 2021

\(4,\\ A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\\ A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\\ A=\left|x+1\right|+\left|x-1\right|\\ A=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu \("="\Leftrightarrow x=1\)

10 tháng 10 2021

Bài 11:
a: \(\sqrt{18}+3\sqrt{50}-\sqrt{98}\)

\(=3\sqrt{2}+15\sqrt{2}-7\sqrt{2}\)

\(=11\sqrt{2}\)

c: \(\sqrt{20}+\sqrt{80}-\sqrt{45}\)

\(=2\sqrt{5}+4\sqrt{5}-3\sqrt{5}\)

\(=3\sqrt{5}\)

10 tháng 10 2021

Trình bày dễ hiểu, đừng làm tắt ạ!