Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số
bài 5:
Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4
Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3
suy ra p+q chia hêt cho 12
ta có :xy-2x+3y=13
xy+3y-2x=13
y(x+3)-2x=13
y(x+3)-2x+6-6=13
y(x+3)-2(x+3)-6=13
(x+3)(y-2)=13+6=19
\(\Rightarrow\left(x+3\right)\left(y-2\right)\inƯ\left(19\right)\)\(=\left(-19;19;1;-1\right)\)
X+3 | 19 | -19 | 1 | -1 |
Y-2 | 1 | -1 | 19 | -19 |
x | 16 | -21 | -2 | -4 |
y | 3 | 1 | 21 | -17 |
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)
Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.
Khi q=3k+2 thì p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ
Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn
Vậy số dư khi chia p+q cho 12 =0
p;q là các số nguyên tố >3 =>q=3k+1;3k+2
xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3 (trái giả thuyết)
=>q=3k+2=>p=3k+2+2=3k+4
=>p+q=3k+2+3k+4=6k+6=6(k+1)
q= 3k+2 không chia hết cho 2
=>3k không chia hết cho 2
=>k không chia hết cho 2
=>k+1 chia hết cho 2=>k+1=2a
=>p+q=6(k+1)=6.2a=12a chia hết cho 12
vậy p+q chia hết cho 12
Chắc đề bài của bạn còn thiếu, tìm x,y thuộc Z thì tìm đc chứ thế này thì vô tận mà @@
Cho mik xin lỗi xEZ