Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2^2}+\dfrac{1}{\left(2.2\right)^2}+\dfrac{1}{\left(2.3\right)^2}+...+\dfrac{1}{\left(2.10\right)^2}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{2^2.2^2}+\dfrac{1}{2^2.3^2}+...+\dfrac{1}{2^2.10^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\right)\)
\(< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right)\)
\(=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{4}\left(2-\dfrac{1}{10}\right)< \dfrac{1}{4}.2=\dfrac{1}{2}\) (đpcm)
\(3,8276< \overline{3,8ab5}< 3,836\)
=>\(276< \overline{ab5}< 360\)
=>\(\left(a,b\right)\in\left\{\left(2;8\right);\left(2;9\right);\left(3;0\right);\left(3;1\right);\left(3;2\right);\left(3;3\right);\left(3;4\right);\left(3;5\right)\right\}\)
\(\left(2x-3,5\right)^2+\left(x^2-\dfrac{49}{16}\right)^2=0\)
Vì \(\left(2x-3,5\right)^2\ge0;\left(x^2-\dfrac{49}{16}\right)^2\ge0\)
\(\Rightarrow\left(2x-3,5\right)^2+\left(x^2-\dfrac{49}{16}\right)^2\ge0\)
Mà \(\left(2x-3,5\right)^2+\left(x^2-\dfrac{49}{16}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-3,5=0\\x^2-\dfrac{49}{16}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{4}\\x=\pm\dfrac{7}{4}\end{matrix}\right.\Rightarrow x=\dfrac{7}{4}\)
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{2022^2}< \dfrac{1}{2021.2022}\)
cộng vế với vế
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2022^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
Vậy ta có đpcm
\(\dfrac{x+4}{3}=\dfrac{x-11}{-6}\)
\(\dfrac{2x+8}{6}=\dfrac{-x+11}{6}\)
\(\Leftrightarrow2x+8=-x+11\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)