Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Mà xy = 10
=> 2k . 5k = 10
=> 10k2 = 10
=> k2 = 1
=> k = 1 hoặc k = -1
=>x = 2 ; y = 5 hoặc x = -2 ; y = -5
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
\(\Rightarrow xy=2k\cdot5k=10\)
\(\Leftrightarrow10k^2=10\)
\(\Leftrightarrow k^2=1\Leftrightarrow k=\orbr{\begin{cases}1\\-1\end{cases}}\)
ta có:\(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\end{cases}}\)
hoặc \(\hept{\begin{cases}x=-1\cdot2=-2\\y=-1\cdot5=-5\end{cases}}\)
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
Ta có:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\right)\)
\(A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=1+\frac{3}{4}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow A=1+\frac{3}{4}+B-\frac{100}{2^{99}}\) (1)
Ta có:
\(B=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}...+\frac{1}{2^{99}}\)
\(\Rightarrow2B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}...+\frac{1}{2^{98}}\)
\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(B=\frac{1}{2^2}+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}+0+0+...+0-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}-\frac{1}{2^{99}}\)
Từ (1)
\(\Rightarrow A=1+\frac{3}{4}+\left(\frac{1}{4}-\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=\frac{7}{4}+\frac{1}{4}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(A=2-\frac{2}{2^{100}}-\frac{100}{2^{100}}\)
\(A=2-\frac{102}{2^{100}}\)
Vậy \(A=2-\frac{102}{2^{100}}\)
Mấy cái này là bài tìm x mày mò một tẹo là ra mà. Câu a thì tính ra được căn bậc 2 của 16/9 là 4/3. Sẽ tính ra được giá trị tuyệt đối của x + 1/2. Từ đó suy ra 2 trường hợp. Làm tương tự với câu b.
Câu c tính ra được x bằng 3 mũ 7 (3^12 / 3^5 = 3^7)
Câu d đổi hỗn số ra phân số rồi làm như bình thường.