K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)

b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)

c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)

d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)

e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)

f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)

Bài 15:a)\(\dfrac{-2}{5}\)+\(\dfrac{4}{5}\) . x =\(\dfrac{3}{5}\)b)\(\dfrac{-3}{7}\) - \(\dfrac{4}{7}\):x = -2Bài 16a) x - \(\dfrac{10}{3}\) = \(\dfrac{7}{15}\) . \(\dfrac{3}{5}\)b) x + \(\dfrac{3}{22}\)= \(\dfrac{27}{121}\) . \(\dfrac{11}{9}\)c) \(\dfrac{8}{23}\) . \(\dfrac{48}{24}\) - x = \(\dfrac{1}{3}\)d) 1 - x = \(\dfrac{49}{65}\).\(\dfrac{5}{7}\)Bài 17: tìm xa) \(\dfrac{62}{7}\) . x = \(\dfrac{29}{9}\): \(\dfrac{3}{56}\)b) \(\dfrac{1}{5}\) :...
Đọc tiếp

Bài 15:

a)\(\dfrac{-2}{5}\)+\(\dfrac{4}{5}\) . x =\(\dfrac{3}{5}\)

b)\(\dfrac{-3}{7}\) - \(\dfrac{4}{7}\):x = -2

Bài 16

a) x - \(\dfrac{10}{3}\) = \(\dfrac{7}{15}\) . \(\dfrac{3}{5}\)

b) x + \(\dfrac{3}{22}\)\(\dfrac{27}{121}\) . \(\dfrac{11}{9}\)

c) \(\dfrac{8}{23}\) . \(\dfrac{48}{24}\) - x = \(\dfrac{1}{3}\)

d) 1 - x = \(\dfrac{49}{65}\).\(\dfrac{5}{7}\)

Bài 17: tìm x

a) \(\dfrac{62}{7}\) . x = \(\dfrac{29}{9}\)\(\dfrac{3}{56}\)

b) \(\dfrac{1}{5}\) : x=\(\dfrac{1}{5}\)+\(\dfrac{1}{7}\)

bài 18:

a)\(\dfrac{2}{5}\)+\(\dfrac{3}{4}\): x =\(\dfrac{-1}{2}\)

b)\(\dfrac{5}{7}\) - \(\dfrac{2}{3}\) . x = \(\dfrac{4}{5}\)

c) \(\dfrac{1}{2}\)x + \(\dfrac{3}{5}\)x = \(\dfrac{-2}{3}\)

d) \(\dfrac{4}{7}\).x-x = \(\dfrac{-9}{14}\)

bài 19: tính 

\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+ \(\dfrac{1}{2018.2019}\)

bài 20:tìm x 

\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\)=\(\dfrac{2008}{2009}\)

bài 21: tìm x

\(\dfrac{x+1}{99}\)+\(\dfrac{x+2}{98}\)\(\dfrac{x+3}{97}\)\(\dfrac{x+4}{96}\)=-4

bài 22 : so sánh các phân số sau:

a) \(\dfrac{-1}{5}\)+\(\dfrac{4}{-5}\)và 1

b) \(\dfrac{3}{5}\) và \(\dfrac{2}{3}\)+\(\dfrac{-1}{5}\)

c)\(\dfrac{3}{2}\)+\(\dfrac{-4}{3}\) và \(\dfrac{1}{10}\)+\(\dfrac{-4}{5}\)

d) \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{1}{6}\) và 2

1
6 tháng 2 2021

help khocroi

6 tháng 2 2021

Hết à bạn

 

7 tháng 4 2022

a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)

b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)

7 tháng 4 2022

c)\(x=\left(\dfrac{5}{6}-\dfrac{2}{5}\right).5=\dfrac{13}{6}\)

d)\(=>x\left(\dfrac{3}{4}-\dfrac{2}{5}\right)=\dfrac{1}{6}\cdot\left(\dfrac{3}{7}+\dfrac{5}{7}\right)\)

\(x\cdot\dfrac{7}{20}=\dfrac{4}{21}=>x=\dfrac{4}{21}\cdot\dfrac{20}{7}=\dfrac{80}{147}\)

19 tháng 7 2018

a) \(\dfrac{-5}{6}.\dfrac{120}{25}< x< \dfrac{-7}{15}.\dfrac{9}{14}\)

\(\Rightarrow-4< x< \dfrac{-3}{10}\)

\(\Rightarrow\dfrac{-40}{10}< x< \dfrac{-3}{10}\)

\(\Rightarrow x\in\left\{\dfrac{-39}{10};\dfrac{-38}{10};\dfrac{-37}{10};...;\dfrac{-5}{10};\dfrac{-4}{10}\right\}\)

b) \(\left(\dfrac{-5}{3}\right)^2< x< \dfrac{-24}{35}.\dfrac{-5}{6}\)

\(\Rightarrow\dfrac{25}{9}< x< \dfrac{4}{7}\)

\(\Rightarrow\dfrac{175}{63}< x< \dfrac{36}{63}\)

\(\Rightarrow x=\varnothing\)

c) \(\dfrac{1}{18}< \dfrac{x}{12}< \dfrac{y}{9}< \dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{2}{36}< \dfrac{3x}{36}< \dfrac{4y}{36}< \dfrac{9}{36}\)

\(\Rightarrow x\in\left\{1;2\right\}\)

+) Với \(x=1\)

\(\Rightarrow y\in\left\{1;2\right\}\)

+) Với \(x=2\)

\(\Rightarrow y=2\)

Vậy \(x=1\) thì \(y\in\left\{1;2\right\}\); \(x=2\) thì \(y=8\).

6 tháng 3 2017

b, \(\dfrac{x-3}{4}=\dfrac{15}{20}\)

<=> \(\dfrac{x-3}{4}=\dfrac{3}{4}\)

=> x-3=3

<=> x=6

Vậy x=6

9 tháng 6 2017

\(a,\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)

* \(\dfrac{x}{15}=\dfrac{-2}{5}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{-6}{15}\)

\(\Rightarrow x=-6\)

*\(\dfrac{4}{y}=\dfrac{-2}{5}\)

\(\Rightarrow\dfrac{4}{y}=\dfrac{4}{-10}\)

\(\Rightarrow y=-10\)

Vậy x = - 6 ; y = - 10

\(b,\dfrac{x-3}{4}=\dfrac{15}{20}\)

=> ( x - 3 ) . 20 = 4. 15

=> 20x - 60 = 60

=> 20x = 60 + 60

=> 20x = 120

=> x = 120 : 20

=> x = 6

Vậy x = 6

\(c,\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)

\(\Rightarrow\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{-22}{9}+\dfrac{-7}{15}< x\le\dfrac{-4}{12}+\dfrac{-3}{12}+\dfrac{-5}{12}\)

\(\Rightarrow\left(\dfrac{-5}{9}+\dfrac{-22}{9}\right)+\left(\dfrac{-8}{15}+\dfrac{-7}{15}\right)< x\le-1\)

\(\Rightarrow-3+\left(-1\right)< x\le-1\)

\(\Rightarrow-4< x\le-1\)

\(\Rightarrow x=-3;-2;-1\)

19 tháng 5 2022

tách đi bạn

19 tháng 5 2022

a) (2x - 3)(6 - 2x) = 0

=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)

b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)

c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)

d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)

e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)

 

28 tháng 4 2017

Bài 1:

a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{2}{4}\)

\(=\dfrac{3}{4}\)

b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)

\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)

\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)

\(=\dfrac{1}{2}+\dfrac{4}{5}\)

\(=\dfrac{5}{10}+\dfrac{8}{10}\)

\(=\dfrac{9}{5}\)

c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)

\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)

\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)

\(=\dfrac{7}{3}+\dfrac{28}{3}\)

\(=\dfrac{35}{3}\)

d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)

\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)

\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)

\(=\dfrac{1}{6}-\dfrac{7}{2}\)

\(=\dfrac{1}{6}-\dfrac{21}{6}\)

\(=\dfrac{-10}{3}\)

e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)

\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\dfrac{2}{3}\)

f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{3}{2}\)

\(=\dfrac{2}{2}=1\)

g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)

\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)

\(=\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{2}{4}-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)

\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{9}{28}\)

\(=\dfrac{196}{140}-\dfrac{45}{140}\)

\(=\dfrac{151}{140}\)

i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)

\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)

\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)

\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)

k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)

\(=-\dfrac{2}{3}\)

29 tháng 4 2017

\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)

\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)

\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)

\(A=\dfrac{1}{8}.1.20\)

\(A=\dfrac{20}{8}=\dfrac{5}{2}\)

\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)

\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)

\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)

\(B=\left(16+1\right)+4,03\)

\(B=17+4,03\)

\(B=21,03\)

\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)

\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)

\(C=390.\dfrac{15}{78}\)

\(C=75\)

a: \(=\dfrac{-28}{36}+\dfrac{15}{36}-\dfrac{26}{36}=\dfrac{-39}{36}=\dfrac{-13}{12}\)

b: \(=\dfrac{11}{9}\left(\dfrac{15}{4}-\dfrac{7}{4}-\dfrac{5}{4}\right)=\dfrac{11}{9}\cdot\dfrac{3}{4}=\dfrac{11}{12}\)

c: \(=15+\dfrac{9}{7}+6+\dfrac{2}{3}-5-\dfrac{5}{9}\)

\(=16+\dfrac{88}{63}=\dfrac{1096}{63}\)

d: \(=\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{2}{18}\)

\(=\dfrac{15-6+2}{18}=\dfrac{11}{18}\)

4 tháng 8 2018

bài 2:tính hợp lý

1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)

\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)

\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)

\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)

Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)