K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Lời giải:
a. Xét hiệu:

$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$

$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$

$\Rightarrow x^3+y^3\geq xy(x+y)$

Dấu "=" xảy ra khi $x=y$

b.

Áp dụng BĐT phần a vô:

$x^3+y^3\geq xy(x+y)$

$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$

$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$

Hoàn toàn tương tự với các phân thức còn lại suy ra:

$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)

\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)

\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)

=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)

NV
24 tháng 8 2021

\(\dfrac{x^3}{2y+1}+\dfrac{2y+1}{9}+\dfrac{1}{3}\ge3\sqrt[3]{\dfrac{x^3\left(2y+1\right)}{27\left(2y+1\right)}}=x\)

Tương tự: \(\dfrac{y^3}{2z+1}+\dfrac{2z+1}{9}+\dfrac{1}{3}\ge y\) ; \(\dfrac{z^3}{2x+1}+\dfrac{2x+1}{9}+\dfrac{1}{3}\ge z\)

Cộng vế:

\(VT+\dfrac{2\left(x+y+z\right)+3}{9}+1\ge x+y+z\)

\(\Rightarrow VT\ge\dfrac{7}{9}\left(x+y+z\right)-\dfrac{4}{3}\ge\dfrac{7}{9}.3\sqrt[3]{xyz}-\dfrac{4}{3}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

7 tháng 10 2021

P = 1

Sqrt(10P - 1) = sqrt(10.1-1)=3

7 tháng 10 2021

\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{zx}+3\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}\sqrt{z}}{\sqrt{zx}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)

\(=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}\)

\(=\dfrac{1+\sqrt{y}+\sqrt{yz}}{1+\sqrt{y}+\sqrt{yz}}=1\)

\(\Rightarrow\sqrt{10P-1}=\sqrt{10.1-1}=\sqrt{9}=3\)

NV
9 tháng 8 2021

Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa

10 tháng 8 2021

=1 ạ em ghi thiếu

NV
10 tháng 8 2021

Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)

Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)

Thật vậy, ta có:

\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)

\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)

11 tháng 10 2021

ai lm dc bài này ko ạ. mik đang cần lắmkhocroi

31 tháng 8 2021

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

1 tháng 9 2021

cam ơn ah. kết quả bằng 3 ah.