K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta có công thức tổng quát của số hạng trong tổng trên có dạng:

\(x_n=\frac{n\left(n+3\right)}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n+2-2}{n^2+3n+2}\)

\(=1-\frac{2}{n^2+3n+2}=1-\frac{2}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow\frac{1.4}{2.3}=1-\frac{2}{2.3}\)

\(\frac{2.5}{3.4}=1-\frac{2}{3.4}\)

\(\frac{3.6}{4.5}=1-\frac{2}{4.5}\)

....

\(\frac{98.101}{99.100}=1-\frac{2}{99.100}\)

\(\Rightarrow N=98-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=98-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98-2\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=98-1+\frac{1}{50}=97+\frac{1}{50}\)

Vậy 97 < N < 98

16 tháng 2 2020

Bạn tham khảo link này: https://h.vn/hoi-dap/question/537598.html

14 tháng 8 2018

ta có A = \(\frac{1.4}{2.3}+\frac{2.5}{3.4}+....+\frac{98.101}{99.100}=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{4950}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)(có 98 chữ số 1)

 \(=98-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)=> A < 98

đi rùi giải tiếp

13 tháng 8 2020

Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3

2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4

...

Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)

N=98+1/100−1/2−1/2.3−1/3.4−....−1/99.100

Xét P=1/2.3+1/3.4+....+1/99.100

P= 1/2−1/3+1/3−1/4+.....+1/99−1100 

P=1/2−1/100

Vậy N=98-1+1/50

N=97+1/50

Vậy 97<N<98(ĐPCM)

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

6 tháng 1 2020

Đặt \(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(\Rightarrow A=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow A=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow A=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{\text{4!}}+...+\frac{1}{100!}\right)\)

\(\Rightarrow A=1+1-\frac{1}{99!}-\frac{1}{100!}\)

\(\Rightarrow A=2-\frac{1}{99!}-\frac{1}{100!}\)

\(2-\frac{1}{99!}-\frac{1}{100!}< 2.\)

\(\Rightarrow A< 2\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 7 2016

ai kb voi mk ko !!!

mk cho

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn