K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

a.xét tứ giác AOMB có

 ∠AOB = ∠ AMB (góc ở tâm cùng chắn cung AB)
=> Tứ giác AOMB nội tiếp

b.vì AD//BC ⇒ ABCD là hình thang, hình thang ABCD lại nội tiếp O
⇒ ABCD là hình thang cân
mà M là giao điểm hai đường chéo
⇒ MB = MC (tính chất hình thang cân)
ΔOMB và ΔOMC có:
OB = OC = R
OM chung
MB = MC (cmt)
⇒Δ OMB =Δ OMC (c.c.c)
⇒góc MOB = góc MOC (góc tương ứng)
⇒OM là đường phân giác góc BOC hay đường phân giác góc BOC của ΔOBC
Mà ΔOBC là tam giác cân tại O (có OB = OC = R)
⇒OM là đường trung trực của tam giác cân OBC
⇒OM ⊥BC (đpcm)

c.vì OM ⊥ BC⇒OM thẳng góc AD
⇒theo tính chất dây và đường kính OM là trung trực của AD và BC
có d//AD
⇒d thẳng góc OM
vì AB cố định nên đường thẳng OM không đổi
vì đường thẳng OM không đổi mà d luôn thẳng góc OM
⇒ d đi qua một điểm cố định trên cung AB nhỏ (đpcm)

15 tháng 5 2016

to cung dang hoi cau nay day

8 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, D] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [C, O] Đoạn thẳng n: Đoạn thẳng [O, J] Đoạn thẳng p: Đoạn thẳng [A, J] O = (1.28, 3.2) O = (1.28, 3.2) O = (1.28, 3.2) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm I: Tâm của d Điểm I: Tâm của d Điểm I: Tâm của d Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m

a. Cô sửa thành AM2 = CM.CD

Xét tam giác ACM và DCA có: \(\widehat{C}\) chung, \(\widehat{CAM}=\widehat{CDA}\) (Chắn hai cung CB và CA bằng nhau)

Vậy thì \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{AC}{CD}=\frac{CM}{CA}\Rightarrow CA^2=CD.CM\)

b.  C là điểm chính giữa cung AB nên OC vuông góc AB tại trung điểm N. Gọi I là tâm đường tròn ngoại tiếp tam giác ADM. AI cắt (O) tại J.

Do câu a: \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\widehat{CAD}=\widehat{CMA}\)

Lại có \(\widehat{JAD}=\widehat{JCD}\) nên \(\widehat{JAD}+\widehat{DAC}=\widehat{JCD}+\widehat{CMA}=90^o\Rightarrow\widehat{CAJ}=90^o\)

Vậy CJ là đường kính (O) hay J cố định, từ đó suy ra Ạ cố định. Lại có tâm I luôn thuộc AJ nên ta đã chứng minh được tâm đường tròn ngoại tiếp tam giác ADM thuộc một đường thẳng cố định.

8 tháng 5 2017

em thấy không ổn lắm ạ vì \(\widehat{JCD}\ne\widehat{OCD}\)

28 tháng 4 2023

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.