Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
x. (x^2)^3 = x^5
x^7 ≠ x^5
Nếu,
x^7 - x^5 = 0
mủ lẻ nên phương trình có 3 nghiệm
Đáp số:
x = -1
hoặc
x = 0
hoặc
x = 1
a, \(\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot\left(1-\frac{1}{16}\right)\cdot\left(1-\frac{1}{25}\right)\cdot\left(1-\frac{1}{36}\right)\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot\frac{35}{36}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\frac{4.6}{5.5}\cdot\frac{5.7}{6.6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}\cdot\frac{3.4.5.6.7}{2.3.4.5.6}=\frac{1}{6}\cdot\frac{7}{2}\)
\(=\frac{7}{12}\)
b, \(\left(2-\frac{3}{2}\right)\cdot\left(2-\frac{4}{3}\right)\cdot\left(2-\frac{5}{4}\right)\cdot\left(2-\frac{6}{5}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1.2.3.4}{2.3.4.5}\)
\(=\frac{1}{5}\)
\(a,A=\left[\frac{4}{11}.\left(\frac{1}{25}\right)^0+\frac{7}{22}.2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)
\(A=\left(\frac{4}{11}.1+\frac{7}{11}\right)^{2010}-\left(\frac{1}{2^2}.2^2\right)^{2009}\)
\(A=1-1=0\)
\(b,B=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)
\(B=\frac{0,8:1}{\frac{3}{5}}+\frac{\left(1\right):\frac{4}{7}}{\left(\frac{59}{9}-\frac{13}{4}\right).36}\)
\(B=0,8.\frac{5}{3}+\frac{\frac{7}{4}}{\frac{119}{36}.36}\)
\(B=\frac{4}{3}+\frac{7}{4}.\frac{1}{119}\)
\(B=\frac{4}{3}+\frac{1}{68}=\frac{275}{204}\)
Bài 1:
a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)
\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)
\(=\frac{-2}{2}=-1\)
b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)
\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)
\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)
\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)
c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)
\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)
d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)
\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)
\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)
e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)
\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)
\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)
\(=\frac{11}{12}\)
f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)
\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)
\(=\frac{1}{5}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)....\left(\frac{1}{121}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.\frac{-24}{25}....\frac{-120}{121}\)
\(=\left[\left(-1\right)\left(-1\right)\left(-1\right)\left(-1\right)....\left(-1\right)\left(10\right)\text{thừa số -1 }\right].\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{10.12}{11.11}\)
\(=\frac{1.12}{2.11}=\frac{6}{11}\)