Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THEO ĐỀ BÀI TA CÓ
1^2+2^2+3^2+...+10^2=385
MÀ 2^2+4^2+....+20^2=2(1^2+2^2+....+10^2)=2.385=770
VẬY 2^2+2^4+....+20^2=770
Bài 1 :
\(\left(0.25\right)^5:\left(0,25\right)^3=\left(0,25\right)^2\)
5: \(=-\left(x^2+3x+5\right)\)
\(=-\left(x^2+3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)
6: \(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)
\(=-3\left(x+1\right)^2-1< 0\)
cho a+b+c=a mũ 2 +b mũ 2 +c mũ 2=2 và x:y:z=a:b:c chứng minh rằng(x+y+z)mũ 2=2x mũ 2 +2y mũ 2+2z mũ2
\(\left(2+4x\right)^2+\left(y-6\right)^2=0\)
\(\left\{{}\begin{matrix}\left(2+4x\right)^2\ge0\\\left(y-6\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2+4x\right)^2+\left(y-6\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2+4x\right)^2=0\Rightarrow2+4x=0\Rightarrow4x=-2\Rightarrow x=-0,5\\\left(y-6\right)^2=0\Rightarrow y-6=0\Rightarrow y=6\end{matrix}\right.\)
\(\left|8-4x\right|+\left|2x-y\right|=0\)
\(\left\{{}\begin{matrix}\left|8-4x\right|\ge0\\\left|2x-y\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|8-4x\right|+\left|2x-y\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|8-4x\right|=0\Rightarrow8-4x=0\Rightarrow4x=8\Rightarrow x=2\\2.2-y=0\Rightarrow y=4\end{matrix}\right.\)
\(\left|16+0,5x\right|+\left(y-2\right)^2=0\)
\(\left\{{}\begin{matrix}\left|16+0,5x\right|\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left|16+0,5x\right|+\left(y-2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|16+0,5x\right|=0\Rightarrow16+0,5x=0\Rightarrow0,5x=16\Rightarrow x=32\\\left(y-2\right)^2=0\Rightarrow y-2=0\Rightarrow y=2\end{matrix}\right.\)
a) \(\left(\frac{-1}{3}\right)^4=\frac{\left(-1\right)^4}{3^4}=\frac{1}{81}\)
b) \(\left(-2\frac{1}{4}\right)^3=\left(\frac{-9}{4}\right)^3=\frac{\left(-9\right)^3}{4^3}=\frac{-729}{64}\)
c) \(\left(-0,2\right)^2=\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
d) \(\left(-5,3\right)^0=1\)
a)\(\left(\frac{-1}{3}\right)^4=\frac{1}{81}\)
b) \(\left(-2\frac{1}{4}\right)^3=\frac{-729}{64}\)
c) \(\left(-0,2\right)^2=\frac{1}{25}\)
d) \(\left(-5,3\right)^0=1\)
Cbht
Đặt x/3 = y/7 = z/5 = k
=> x=3k , y=7k , z=5k
x^2-y^2+z^2=-60
=> (3k)^2 - (7k)^2 + (5k)^2 =-60
=>3^2.k^2 - 7^2.k^2 + 5^2.k^2 = -60
=>k^2(3^2 - 7^2 + 5^2) = -60
=>k^2.(-15) = -60
=>k^2 = 4
=> k=2 hoặc k=-2
Với k=2 => x=3.2=6
y=7.2=14
z=5.2=10
Với k=-2 => x=3.(-2)=-6
y=7(-2)=-14
z=5(-2)=-10
Đặt: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}=k\)
=> \(x=3k;\)\(y=7k;\)\(z=5k\)
Theo bài ra ta có:
\(x^2-y^2+z^2=-60\)
\(\Leftrightarrow\)\(9k^2-49k^2+25k^2=-60\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
Nếu \(k=2\)thì: \(x=6;\)\(y=14;\)\(z=20\)
Nếu \(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-20\)