Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{2}.B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(\frac{1}{2}.B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{1}{2}.B=1-\frac{1}{101}=\frac{100}{101}\)
\(B=\frac{100}{101}.2=\frac{200}{101}\)
b, \(\frac{4}{5}.C=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{101.105}\)
\(\frac{4}{5}.C=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
\(\frac{4}{5}.C=1-\frac{1}{105}=\frac{104}{105}\)
\(C=\frac{104}{105}.\frac{5}{4}=\frac{26}{21}\)
\(B=\frac{2}{2}\cdot\left(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+....+\frac{4}{99\cdot101}\right)\)
\(=\frac{4}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\cdot\left(1-\frac{1}{101}\right)\)
\(=2\cdot\frac{100}{101}\)
\(=1\frac{99}{101}\)
\(C=\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+...+\frac{5}{101.105}\)
\(C=5.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\right)\)
\(C=5.\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{101}-\frac{1}{105}\right)\)
\(C=\frac{5}{4}.\left(1-\frac{1}{105}\right)\)
\(C=\frac{5}{4}.\frac{104}{105}\)
\(C=\frac{26}{21}\)
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
\(A=3\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\right)\)
\(A=3\times\left(1-\frac{1}{105}\right)\)
\(A=3\times\frac{104}{105}\)
\(A=\frac{104}{35}\)
Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được
bạn sửa số cuối tử là 4 nhé
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}=1-\dfrac{1}{405}=\dfrac{404}{405}\)
\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{401.405}\\ =1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}\\ =1-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{401}-\dfrac{1}{401}\right)-\dfrac{1}{405}\\ =1-0-0-....-0-\dfrac{1}{405}\\ =1-\dfrac{1}{405}\\ =\dfrac{404}{405}\)
S=4/1.5+4/5.9+...+4/2001.2005
S =1/1 - 1/5 + 1/5 -1/9 + ...+ 1/2001 - 1/2005
S = 1/1 - 1/2005
S = 2014/2015
$#trúc$
`4/(1.5) + 4/(5.9) + 4/(9.13) + .... + 4/(2013 . 2017)`
=`1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/2013 - 1/2017`
= `1 - 1/2017`
= `2017/2017 - 1/2017`
= `2016/2017`
\(A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{101.105}\)
\(A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\)
\(A=1-\frac{1}{105}=\frac{104}{105}\)