K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

a) để 537ab chia hết cho cả 2;3;5 và 9 thì \(b\in\left\{0\right\}\)

để 537a0 chia hết cho 3 và 9 thì 5 + 3 + 7 + a + 0 phải chia hết cho 9 hay  15 + a phải chia hết cho 9

Vậy \(a\in\left\{3\right\}\).Số cần tìm là 53730

b) để 13a5b chia hết cho 3 và 5 thì b \(\in\) {0;5}

Với b = 0 ta có 13a50. Để 13a50 chia hết cho 3 thì 1 + 3 + a + 5 + 0 chia hết cho 3 hay 9 + a chia hết cho 3. Vậy a \(\in\) {0;3;6;9}.Số cần tìm là 13050 ; 13350; 13650 ; 13950. 

Với b = 5 ta có 13a55. Để 13a55 chia hết cho 3 thì 1 + 3 + a + 5 + 5 chia hết cho 3 hay 14 + a chia hết cho 3. Vậy a \(\in\) {1;4;7} . Số cần tìm là 13155 ; 13455 ; 13755.

Tick mình nha

20 tháng 12 2015

a=1va 3

b=0 va 5

13 tháng 11 2021

Ta có b = 0 vì 0 chia hết cho cả 2 và 5

mà ( 5+a+1+2+0 ) phải chia hết cho 9

=> ( a+8 ) chia hết cho 9 => a = 9-8 = 1

Vậy a = 1 , b= 0

13 tháng 11 2021

A là 1 b là 0 nha

5 tháng 11 2018

Giups mình với bạn nào nhanh thì mình k luôn cho

5 tháng 11 2018

a) =>Vì số a45b chia hết cho 2 và 5=>b=0=>a45b=a450

Vì số a450 chia hết cho 3 và 9 =>a+4+5+0 chia hết cho 9

                                                     hay a+9 chia hết cho 9

=>a=0;9

Mà a đứng đầu suy ra a=9

Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.

Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.

Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.

30 tháng 10 2023

Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.

a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
  • Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.

b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
  • Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.

Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.

c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

  • Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
  • Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.

Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.

3 tháng 1 2018

a, Do 18 a b  chia hết cho 5 và 8 nên b = 0, suy ra số cần tìm có dạng  18 a 0

Theo dấu hiệu nhận biết chia hết cho 8 thì ta có a 0  chia hết cho 8

=>  a 0  cần tìm là 40 hoặc 80

Số cần tìm là 1840 hoặc 1880.

b, 34452; 34056

c, 76923

d, 12221