K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

1.2 + 2.3 + 3.4 +…+ 99.100 
= 1+ (1.2 + 2) + (2.3 + 3) + (3.4 + 4) +…+ (99.100 + 100) – (1 + 2 + 3 + 4 +…+ 100) 
= 12 + 22 + 32 + 42 +…+ 1002 – (1 + 100).100:2 
= 100.(100 + 1).(2.100 + 1):6 – 101.100:2 
= 333300

1 tháng 12 2017

giải từng bước 1 nha cho mk chép

13 tháng 7 2023

\(C=1.2+2.3+3.4+...+x.\left(x-1\right)\)

\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+x.\left(x-1\right).3\)

\(\Rightarrow3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+x.\left(x-1\right).\left[\left(x+1\right)-\left(x-2\right)\right]\)

\(\Rightarrow3C=\left(1.2.3-0.12\right)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.4\right)+...+\left[x.\left(x-1\right)\left(x+1\right)-x.\left(x-1\right)\left(x-2\right)\right]\)

\(\Rightarrow3C=-0.1.2+x.\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow3C=x.\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow C=\dfrac{x.\left(x-1\right)\left(x+1\right)}{3}\)

13 tháng 7 2023

3C=1x2x3+2x3x3+3x4x3+...+Xx(X+1)=

=1x2x3+2x3x(4-1)+3x4x(5-2)+...+Xx(X+1)[(X+2)-(X-1)]=

=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-(X-1)xXx(X+1)+Xx(X+1)x(X+2)=

=Xx(X+1)(X+2)

 

 

29 tháng 6 2016

gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

**** nha ^^

29 tháng 6 2016

Gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

7 tháng 11 2017

P=1x2+2x3+3x4+...+2017x2018

3P = 1x2x3 + 2x3x3 + 3x4x3 + ... + 2017x2018x3

3P = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... +2017x2018x(2019-2016)

3P = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2017x2018x2019 - 2016x2017x2018

3P = 2017x2018x2019

P = 2017x2018x2019 : 3

P = 2739315938 

7 tháng 11 2017

P = 1x2+2x3+3x4+...+2017x2018

3xP = 1x2x3+2x3x3+3x4x3+...+2017x2018x3

3xP = 1x2x3+2x3x(4-1)+3x4x(5-2)+...+2017x2018x(2019-2016)

3xP = 1x2x3+2x3x4-2x3x1+3x4x5-3x4x2+...+2017x2018x2019-2017x2018x2016

3xP = 2017x2018x2019

3xP = 8217947814

P = 8217947814 : 3

P = 2739315938 

24 tháng 8 2018

1.2+2.3+3.4+4.5+............+99.100

=2+6+12+20+.............+9900

dãy số trên có số các số hạng là:

   mìk chỉ làm đc đến đây thôi

24 tháng 8 2018

A = 1 x 2 + 2 x 3 + 3 x 4 + . . . + 99 x 100

3A = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + . . . + 99 x 100 x ( 101 - 98 )

3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + . . . + 99 x 100 x 101 - 98 x 99 x 100

3A = 99 x 100 x 101

A = 99 x 100 x 101 : 3

A = 33 x 100 x 101

A =  333300

30 tháng 8 2018

a) 1/1x5 + ... + 1/21x25

= 4 x (1-1/5 + 1/5 - 1/9 + ... + 1/21 - 1/25)

= 1/4 x (1 - 1/25)

= 1/4 x 24/25

= 6/25

30 tháng 9 2017
333300 nha bạn
30 tháng 9 2017

M=1.2+2.3+3.4+...+19.20

3.M=1.2.3+2.3.3+3.4.3+...+19.20.3

3.M=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)

3.M=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(19.20.21-18.19.20)

Những cái bị gạch là giản ước.

3.M=19.20.21-0.1.2

3.M=7980-0

3.M=7980

M=7980:3

M=2660

Vậy M=2660

Dấu . là dấu nhân

10 tháng 3 2018

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(S=1-\frac{1}{2018}\)

\(S=\frac{2018}{2018}-\frac{1}{2018}\)

\(S=\frac{2017}{2018}\)

10 tháng 3 2018

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

3 tháng 3 2019

sai một chỗ

\(A=1.2+2.3+3.4+...+18.19\)

\(\Leftrightarrow3A=1.2.3+2.3.3+3.4.3+...+18.19.3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+18.19.\left(20-17\right)\)

\(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+...+18.19.20-17.18.19\)

\(\Leftrightarrow3A=18.19.20\)

\(\Leftrightarrow A=6.19.20\)

3 tháng 3 2019

A= 1.2 + 2.3 + 3.4 + ... + 18.20

3A= 1.2.3 + 2.3.3 + 3.4.3 + ... + 18.20.3

3A= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 18.20.(21-18)

3A= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 18.20.21 - 18.19.20

3A= 18.20.21

A= 2520