K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

\(\dfrac{1}{2}A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}\)

\(A-\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(A=\dfrac{1}{2^{2022}}-2\)

28 tháng 12 2022

12A=12+(12)2+(12)3+(12)4+...+(12)202312A=12+(12)2+(12)3+(12)4+...+(12)2023

A−12A=(12)2023−1A−12A=(12)2023−1

12A=(12)2023−112A=(12)2023−1

A=122022−2

\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)

\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)

5 tháng 8 2021

a, \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)
\(=\dfrac{5}{7}+\dfrac{-5}{7}+\dfrac{3}{5} =0+\dfrac{3}{5}=\dfrac{3}{5}\)

b, \(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2=\dfrac{-3}{4}-\dfrac{-3}{2}+1=\dfrac{-3}{4}-\dfrac{-6}{4}+1=\dfrac{3}{4}+1=\dfrac{7}{4}\)

 c, \(\dfrac{-5}{9}+\left(\dfrac{-2}{3}\right)^2.\left(20\%-1.2\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(\dfrac{1}{5}-\dfrac{6}{5}\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(-1\right)=\dfrac{-5}{9}+\dfrac{-4}{9}=-1\)

5 tháng 8 2021

Bài 1:

a) \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)\(=\left(\dfrac{5}{7}+\dfrac{-5}{7}\right)+\dfrac{3}{5}\)\(=0+\dfrac{3}{5}=\dfrac{3}{5}\)

b) \(\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2\)\(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+1\)\(=\dfrac{-3}{4}-\dfrac{-3}{2}+1\)

                                            \(=\dfrac{3}{4}+1\)\(=\dfrac{7}{4}\)

2 tháng 5 2023

1) Ta có 

\(C=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\)

\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}\)

\(C=\dfrac{1}{2022}\)

2) \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A\) \(=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow16A=12A+4A=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

\(=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\) \(< 3\). Từ đó suy ra \(A< \dfrac{3}{16}\)

1 tháng 3 2023

`(2/3 x +1/2) (-2x+3)=0`

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}.\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)

1 tháng 3 2023

\(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)\cdot\left(-2x+3\right)=0\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)

5 tháng 8 2021

a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

1 tháng 3 2023

Bài mik có làm gần đây , bn tham khảo!

loading...

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
$A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2022}$

$\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+...+(\frac{3}{2})^{2023}$
$\Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2023}-\frac{3}{2}$

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2023}-\frac{3}{2}$

$\Rightarrow \frac{1}{2}A=(\frac{3}{2})^{2023}-\frac{1}{2}$

$\Rightarrow A=2(\frac{3}{2})^{2023}-1$