K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=1.21+4^3.21+...+4^57.21

A=(1+4^3+...+4^57).21

Vậy A chia hết cho 21

6 tháng 11

C= 4(1+4+4^2+4^3+4^4+...+4^59) 

C= 4+4^2+4^3+4^4+...+4^59

C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2) 

C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16) 

C=4.21 + 4^3.21+4^57.21

Suy ra C chia hết cho 21

17 tháng 12 2021

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)

A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)

A=5+42.5+...+448.5A=5+42.5+...+448.5

A=5(1+42+...+448)A=5(1+42+...+448)

⇒A⋮5

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
k cho mik đi mik cảm ơn

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

26 tháng 8 2018

A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)

A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)

A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)

A= 21 + 4^3.21 + ...+ 4^57.21

A = 21.(1+4^3+...+4^57) chia hết cho 21

phần b đề là j z bn

16 tháng 10 2016

4A=4+4^2+4^3+.....+4^60

4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)

3A=4^60-1

A=\(\frac{4^{60}-1}{3}\)

4 tháng 8 2017

e hình như bạn giải lạc đề rồi

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

29 tháng 10 2018

Chia hết cho 5

(1+4)+(4^2+4^3)+...+(4^58+4^59)

=5+4^2(1+4)+...+4^58(1+4)

=5+4^2.5+...+4^58.5

=5(1+4^2+...+4^58)chia hết cho 5

Chia hết cho 21;85 làm tương tự 

Chia hết cho 21 nhóm 3 số nhé

Chia hết cho 85 nhóm 4 số nhé 

8 tháng 8 2017

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(A=5+4^2.5+...+4^{58}.5\) 

\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)

Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.

.

.

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)

\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(A=21+4^3.21+...+4^{57}.21\)

\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)

Vậy  \(A=1+4+4^2+...+4^{58}+4^{59}\)  chia hết cho 21.

( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha  )

3 tháng 10 2021
A=(1+4)+4^2(1+4)+...+4^58(1+4) =5.(1+4^2+...+4^58) Vậy A chia hết cho 5 A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2) =21(1+4^3+...+4^57) Vậy A chia hết cho 21
16 tháng 10 2016

a) A = 1 + 4 + 42 + 43 + ... + 459

  A = ( 1 + 4 ) + ( 42 + 43 ) + ... + ( 458 + 459 )

A = 5 + 42 . ( 1 + 4 ) + ... + 458 . ( 1 + 4 )

A = 5 + 42 . 5 + ... + 458 . 5

A = 5 . ( 1 + 42 + ... + 458 ) chia hết cho 5

b) A = 1 + 4 + 42 + 43 + ... + 459

  A = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 457 +  458 + 459 )

  A = 21 + 43 . ( 1 + 4 + 42 ) + ... + 457 . ( 1 + 4 + 42 )

A = 21 + 43 . 21 + ... + 457 . 21

A = 21 . ( 1 + 43 + ... + 457 ) chia hết cho 21

c) A = 1 + 4 + 42 + 43 + ... + 459

  A = ( 1 + 4 + 42 + 43 ) + ( 44 + 45 + 46 + 47 ) + ... + ( 456 + 457 +  458 + 459 )

A = 85 + 44 . (1 + 4 + 42 + 43 ) + ... + 456 . ( 1 + 4 + 4+ 43 )

A = 85 + 44 . 85 + ... + 456 . 85

A = 85 . (1 + 4+ ... + 456 ) chia hết cho 85