K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2024

Số số hạng của A là:

(267-1):1+1=267(số hạng)

Tổng của A là:

(267+1)x267:2=35778

Vậy A=35778

3 tháng 11 2024

A=35778

14 tháng 1 2018

1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng

Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]

A= (-1)+(-1)+.... +(-1)

A= (-1).50=(-50)

2,A=(1-2)+(3-4)+.....+(2015-2016)

A=(-1)+(-1)+....+(-1)

A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)

A=(-1).1008=(-1008)

14 tháng 1 2018

\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)

\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)

\(A=2500-2550=-50\)

Đúng ko ta lâu rồi ko làm.

\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)

11 tháng 2 2019

A = (-1)(-1)^2(-1)^3...(-1)^2019

A = (-1)^1+2+3+...+2019

A = (-1)^2039190

A = 1

S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4

4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)

4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019

4S = 2018.2019.2020.2021

S = 2018.2019.2020.2021 : 4 = ...

cảm ơn bạn nhiều nhé

5 tháng 8 2018

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 


=>S=[n.(n+1).(n+2)] : 3

29 tháng 8 2022

bb

3 tháng 7 2021

I.

Ta có:

1 + 2 = 3 (Số liền trước 4)

1 + 2 + 4 = 7 (Số liền trước 8)

1 + 2 + 4 + 8 = 15 (Số liền trước 16)

<=> 1 + 2 + 4 + 8 + 16 + ... + 4096 sẽ bằng số liền trước 8192 => Số liền trước 8192 là 8191:

=> 8191 + 8192 = 16383

3 tháng 7 2021

II.

a)

Áp dụng theo công thức:

Số số hạng:

\(\left(n-1\right):1+1=n\) (số hạng)

Tổng:

\(\left(n+1\right)\frac{n}{2}\)

b) 

Số số hạng:

\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)

Tổng:

\(\frac{\left(2n+2\right)n}{2}=\left(n+1\right)n\)

c) 

Số số hạng:

\(\left(2005-1\right):3+1=669\) (số hạng)

Tổng:

\(\left(2005+1\right).669:2=671007\)

19 tháng 10 2018

\(A=1+4+4^2+4^3+...+4^{50}\)

=>  \(4A=4+4^2+4^3+4^4+...+4^{51}\)

=>  \(4A-A=\left(4+4^2+4^3+...+4^{51}\right)-\left(1+4+4^2+...+4^{50}\right)\)

=>  \(3A=4^{51}-1\)

=>  \(A=\frac{4^{51}-1}{3}\)

19 tháng 10 2018

\(4A=4.\left(1+4+4^2+...+4^{50}\right)\)

\(4A=4+4^2+4^3+...+4^{51}\)

\(4A-A=4+4^2+4^3+...+4^{51}-\left(1+4+4^2+...+4^{50}\right)\)

\(3A=4^{51}-1\)

\(A=\frac{4^{51}-1}{3}\)

10 tháng 6 2015

Số số hạng của A là:100-1+1=100(số)

Tổng của A là:

(100+1).100:2=5050

Tổng quát: A=1+2+3+...+n=(n+1).n:2