Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: D thuộc Ox nên D(x;0)
vecto AB=(-3;4)
vecto DC=(-3-x;-1)
Để ABDC là hình thang thì \(\dfrac{-3}{-x-3}=\dfrac{4}{-1}=-4\)
=>3/x+3=4
=>x+3=3/4
=>x=-9/4
2: \(\overrightarrow{MA}=\left(3-x;0\right)\)
vectoMC=(-3-x;-1)
Để |vecto MA+vecto MC| nhỏ nhất thì vecto MA+vecto MC=vecto 0
=>M là trung điểm của AC
=>M(0;-1/2)
Gọi \(I\left(x_0;y_0\right)\) là điểm thỏa mãn \(\overrightarrow{IA}+\text{}\overrightarrow{IB}=\overrightarrow{0}\)
Ta có \(\left\{{}\begin{matrix}1-x_0+2-x_0=0\\3-y_0+7-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_0=3\\2y_0=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\frac{3}{2}\\y_0=5\end{matrix}\right.\)
\(\Rightarrow I\left(\frac{3}{2};5\right)\)
Khi đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}\right|=\left|2\overrightarrow{MI}+\overrightarrow{0}\right|=2MI\)
Lại có \(\left|\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{CA}\right|=CA=\sqrt{\left(-1-2\right)^2+\left(3-7\right)^2}=5\)
Nên \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow2MI=5\Rightarrow MI=\frac{5}{2}\)
Vậy \(M\in\left(I;\frac{5}{2}\right)\)
\(\overrightarrow{AC}=\left(1;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-3\right)\)
\(C\in d\) ; \(\overrightarrow{u_d}=\left(1;1\right)\) ; \(\overrightarrow{AB}=\left(3;1\right)\Rightarrow AB\) không song song với d
\(\Rightarrow ABEC\) là hình thang khi và chỉ khi AC//BE hoặc BC//AE
Gọi \(E\left(x;x+1\right)\Rightarrow\overrightarrow{BE}=\left(x-2;x-3\right)\) ; \(\overrightarrow{AE}=\left(x+1;x-3\right)\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x-2}{1}=\frac{x-3}{-2}\\\frac{x+1}{-2}=\frac{x-3}{-3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}E\left(\frac{7}{3};\frac{10}{3}\right)\\E\left(-9;-8\right)\end{matrix}\right.\)
K thuộc Ox nên K(x;0)
\(KB=\sqrt{\left(x-1\right)^2+\left(0-3\right)^2}=\sqrt{\left(x-1\right)^2+9}\)
\(KC=\sqrt{\left(2-x\right)^2+\left(7-0\right)^2}=\sqrt{\left(x-2\right)^2+49}\)
Để KB=KC thì \(\left(x-1\right)^2+9=\left(x-2\right)^2+49\)
=>\(x^2-2x+10=x^2-4x+53\)
=>-2x+10=-4x+53
=>2x=43
=>\(x=\dfrac{43}{2}\)
Vậy: \(K\left(\dfrac{43}{2};0\right)\)
Cảm ơn bạn nhiều 😋