Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
a) \(15-5\left|x+4\right|=-12-3\)
\(\Leftrightarrow5\left|x+4\right|=30\)
\(\Leftrightarrow\left|x+4\right|=6\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
b) \(\left(4x-8\right)\left(7-x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-8=0\\7-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
c) \(\left(x^2-36\right)\left(x^2+5\right)=0\Rightarrow\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
d) \(-3\left(x+7\right)-11=2\left(x+5\right)\)
\(\Leftrightarrow-3x-32=2x+10\)
\(\Leftrightarrow5x=-42\Rightarrow x=-\frac{42}{5}\)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
a) x-3=-3
x=0
b) 7+x=1
x=-6
c) /x/+3=4
/x/=1
=>x=1 hoặc x=-1
d) /x+2/=2
x+2=2 hoặc x+2=-2
x=0 x=-4
e) /x-1/=0
x-1=0
x=1
f) /x-1/=2
x-1=2 hoặc x-1=-2
x=3 x=-1
#Hoctot
\(1)\)
\(-3-18\)
\(=-(3+18)\)
\(=-21\)
\(-7\times-5\)
\(=7\times(-1)\times(-5)\)
\(=7\times5\)
\(=35\)
\(5+(-11)\)
\(=5-11\)
\(=-6\)
1,
a) -3 - 18=-21
b) (-7).(-5)=35
c) 5+(-11)=-6
2,
a) -2-13+(-14)-19=-48
b) 221 + 4[(-5).8-4]=45
c) (-2)3.(-2)2+32=0
d) -15.12 - 8.(-12)=-84
3,
a) x:(-2)=9
=>x =9.(-2)
=>x =-18
b)4x+(-8)=24
=>4x =24-(-8)
=>4x =32
=>x =32:4
=>x =8
c) (3x)(x+7)=0
\(\Rightarrow\hept{\begin{cases}3x=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=0:3\\x=0-7\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)
1) 5(x - 2) + 27 = 4x - 8
=> 5x - 10 + 27 = 4x - 8
=> 5x + 17 = 4x - 8
=> 5x - 4x = -8 - 17
=> x = -25
2) 3(x + 1) + 2(x + 2) = -13
=> 3x + 3 + 2x + 4 = -13
=> 5x + 7 = -13
=> 5x = -13 - 7
=> 5x = -20
=> x = -20 : 5
=> x = -4
3) (2x + 4)(5 - x) = 0
=> \(\orbr{\begin{cases}2x+4=0\\5-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=-4\\x=5\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=5\end{cases}}\)
Vậy ...
4) x2 - 3x = 0
=> x(x - 3) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy ...
5) x2 - 3x + 2 = 0
=> x(x - 3) = -2
=> x(x - 3) = 1 . (1 - 3)
=> x = 1
a) \(\frac{x}{-5}>0\)
\(\Rightarrow-5x>0\)
\(\Rightarrow5x< 0\)
\(\Rightarrow x< 0\)
\(\Rightarrow x\in(-1,-2,-3,...)\)
b) \(\frac{2x}{5}=0\)
\(\Rightarrow2x=0\)
\(\Rightarrow x=0\)
c) \(0< \frac{x}{1}< 1\)
\(\Rightarrow0< x< 1\) mà x\(\in z\)
\(\Rightarrow x\in\varnothing\)
d) \(\frac{3x}{6}=1\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
e) \(2< \frac{x}{3}< 4\)
\(\Rightarrow\)\(6< x< 12\)
\(x\in(7,8,9,10,11,12)\)